Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells

Abstract

The flow of genetic information in eukaryotic cells occurs through the nucleocytoplasmic translocation of mRNAs. Knowledge of in vivo messenger RNA export kinetics remains poor in comparison with that of protein transport. We have established a mammalian system that allowed the real-time visualization and quantification of large single mRNA–protein complexes (mRNPs) during export. The in vivo dynamics of bulk mRNP transport and export, from transcription to the nuclear pore complex (NPC), occurred within a 5–40 minute time frame, with no NPC pile-up. mRNP export was rapid (about 0.5 s) and kinetically faster than nucleoplasmic diffusion. Export inhibition demonstrated that mRNA–NPC interactions were independent of ongoing export. Nucleoplasmic transport dynamics of intron-containing and intronless mRNAs were similar, yet an intron did increase export efficiency. Here we provide visualization and analysis at the single mRNP level of the various steps in nuclear gene expression and the inter-chromatin tracks through which mRNPs diffuse, and demonstrate the kinetics of mRNP–NPC interactions and translocation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A mammalian cell system expressing large mRNAs.
Figure 2: Quantification of mRNA nucleocytoplasmic transport.
Figure 3: Analysis of mRNP kinetics.
Figure 4: Measurements of nucleocytoplasmic dynamics of different mRNPs.
Figure 5: Single mRNP export.
Figure 6: Nucleoplasmic pathways for mRNP transport to the NPC.
Figure 7: Hyper-osmolar treatment increases the relative percentage of corralled mRNPs and does not change the diffusion coefficients.

Similar content being viewed by others

References

  1. Kohler, A. & Hurt, E. Exporting RNA from the nucleus to the cytoplasm. Nature Rev. Mol. Cell Biol. 8, 761–773 (2007).

    Article  Google Scholar 

  2. Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nature Rev. Mol. Cell Biol. 4, 757–766 (2003).

    Article  CAS  Google Scholar 

  3. Terry, L. J., Shows, E. B. & Wente, S. R. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318, 1412–1416 (2007).

    Article  CAS  Google Scholar 

  4. Moore, M. J. From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005).

    Article  CAS  Google Scholar 

  5. Iglesias, N. & Stutz, F. Regulation of mRNP dynamics along the export pathway. FEBS Lett. 582, 1987–1996 (2008).

    Article  CAS  Google Scholar 

  6. Mehlin, H., Daneholt, B. & Skoglund, U. Translocation of a specific premessenger ribonucleoprotein particle through the nuclear pore studied with electron microscope tomography. Cell 69, 605–613 (1992).

    Article  CAS  Google Scholar 

  7. Daneholt, B. Assembly and transport of a premessenger RNP particle. Proc. Natl Acad. Sci. USA 98, 7012–7017 (2001).

    Article  CAS  Google Scholar 

  8. Franke, W. W. & Scheer, U. in The Nucleus Vol. 1. (ed. Busch, H.) 219–347 (Academic, 1974).

    Book  Google Scholar 

  9. Iborra, F. J., Jackson, D. A. & Cook, P. R. The path of transcripts from extra-nucleolar synthetic sites to nuclear pores: transcripts in transit are concentrated in discrete structures containing SR proteins. J. Cell Sci. 111, 2269–2282 (1998).

    CAS  PubMed  Google Scholar 

  10. Iborra, F. J., Jackson, D. A. & Cook, P. R. The path of RNA through nuclear pores: apparent entry from the sides into specialized pores. J. Cell Sci. 113, 291–302 (2000).

    CAS  PubMed  Google Scholar 

  11. Pante, N. et al. Visualizing nuclear export of different classes of RNA by electron microscopy. RNA 3, 498–513 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang, S., Deerinck, T. J., Ellisman, M. H. & Spector, D. L. In vivo analysis of the stability and transport of nuclear poly(A)+ RNA. J. Cell Biol. 126, 877–899 (1994).

    Article  CAS  Google Scholar 

  13. Palazzo, A. F. et al. The signal sequence coding region promotes nuclear export of mRNA. PLoS Biol. 5, e322 (2007).

    Article  Google Scholar 

  14. Luo, M. J. & Reed, R. Splicing is required for rapid and efficient mRNA export in metazoans. Proc. Natl Acad. Sci. USA 96, 14937–14942 (1999).

    Article  CAS  Google Scholar 

  15. Jarmolowski, A., Boelens, W. C., Izaurralde, E. & Mattaj, I. W. Nuclear export of different classes of RNA is mediated by specific factors. J. Cell Biol. 124, 627–635 (1994).

    Article  CAS  Google Scholar 

  16. Dargemont, C. & Kuhn, L. C. Export of mRNA from microinjected nuclei of Xenopus laevis oocytes. J. Cell Biol. 118, 1–9 (1992).

    Article  CAS  Google Scholar 

  17. Bastos, R. N. & Aviv, H. Globin RNA precursor molecules: biosynthesis and process in erythroid cells. Cell 11, 641–650 (1977).

    Article  CAS  Google Scholar 

  18. Jelinek, W. et al. Further evidence on the nuclear origin and transfer to the cytoplasm of polyadenylic acid sequences in mammalian cell RNA. J. Mol. Biol. 75, 515–532 (1973).

    Article  CAS  Google Scholar 

  19. Riedel, N., Bachmann, M., Prochnow, D., Richter, H. P. & Fasold, H. Permeability measurements with closed vesicles from rat liver nuclear envelopes. Proc. Natl Acad. Sci. USA 84, 3540–3544 (1987).

    Article  CAS  Google Scholar 

  20. Schroder, H. C. et al. Studies on protein kinases involved in regulation of nucleocytoplasmic mRNA transport. Biochem. J. 252, 777–790 (1988).

    Article  CAS  Google Scholar 

  21. Mariman, E., Hagebols, A. M. & van Venrooij, W. On the localization and transport of specific adenoviral mRNA-sequences in the late infected HeLa cell. Nucleic Acids Res. 10, 6131–6145 (1982).

    Article  CAS  Google Scholar 

  22. Braga, J., McNally, J. G. & Carmo-Fonseca, M. A reaction-diffusion model to study RNA motion by quantitative fluorescence recovery after photobleaching. Biophys. J. 92, 2694–2703 (2007).

    Article  CAS  Google Scholar 

  23. Audibert, A., Weil, D. & Dautry, F. In vivo kinetics of mRNA splicing and transport in mammalian cells. Mol. Cell. Biol. 22, 6706–6718 (2002).

    Article  CAS  Google Scholar 

  24. Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797–1800 (2004).

    Article  CAS  Google Scholar 

  25. Janicki, S. M. et al. From silencing to gene expression; real-time analysis in single cells. Cell 116, 683–698 (2004).

    Article  CAS  Google Scholar 

  26. Chapdelaine, P. et al. Functional EGFP–dystrophin fusion proteins for gene therapy vector development. Protein Eng. 13, 611–615 (2000).

    Article  CAS  Google Scholar 

  27. England, S. B. et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 343, 180–182 (1990).

    Article  CAS  Google Scholar 

  28. Michael, W. M., Choi, M. & Dreyfuss, G. A nuclear export signal in hnRNP A1: a signal-mediated, temperature-dependent nuclear protein export pathway. Cell 83, 415–422 (1995).

    Article  CAS  Google Scholar 

  29. Valencia, P., Dias, A. P. & Reed, R. Splicing promotes rapid and efficient mRNA export in mammalian cells. Proc. Natl Acad. Sci. USA 105, 3386–3391 (2008).

    Article  CAS  Google Scholar 

  30. Saxton, M. J. & Jacobson, K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).

    Article  CAS  Google Scholar 

  31. Braga, J., Rino, J. & Carmo-Fonseca, M. Photobleaching microscopy reveals the dynamics of mRNA-binding proteins inside live cell nuclei. Prog. Mol. Subcell. Biol. 35, 119–134 (2004).

    Article  Google Scholar 

  32. Siebrasse, J. P. et al. Discontinuous movement of mRNP particles in nucleoplasmic regions devoid of chromatin. Proc. Natl Acad. Sci. USA 105, 20291–20296 (2008).

    Article  CAS  Google Scholar 

  33. Lim, R. Y., Aebi, U. & Fahrenkrog, B. Towards reconciling structure and function in the nuclear pore complex. Histochem. Cell Biol. 129, 105–116 (2008).

    Article  CAS  Google Scholar 

  34. Davis, L. I. & Blobel, G. Identification and characterization of a nuclear pore complex protein. Cell 45, 699–709 (1986).

    Article  CAS  Google Scholar 

  35. Blobel, G. Gene gating: a hypothesis. Proc. Natl Acad. Sci. USA 82, 8527–8529 (1985).

    Article  CAS  Google Scholar 

  36. Vargas, D. Y., Raj, A., Marras, S. A., Kramer, F. R. & Tyagi, S. Mechanism of mRNA transport in the nucleus. Proc. Natl Acad. Sci. USA 102, 17008–17013 (2005).

    Article  CAS  Google Scholar 

  37. Politz, J. C., Tuft, R. A., Pederson, T. & Singer, R. H. Movement of nuclear poly(A) RNA throughout the interchromatin space in living cells. Curr. Biol. 9, 285–291 (1999).

    Article  CAS  Google Scholar 

  38. Albiez, H. et al. Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res. 14, 707–733 (2006).

    Article  CAS  Google Scholar 

  39. Carmo-Fonseca, M., Platani, M. & Swedlow, J. R. Macromolecular mobility inside the cell nucleus. Trends Cell Biol. 12, 491–495 (2002).

    Article  CAS  Google Scholar 

  40. Yang, W., Gelles, J. & Musser, S. M. Imaging of single-molecule translocation through nuclear pore complexes. Proc. Natl Acad. Sci. USA 101, 12887–12892 (2004).

    Article  CAS  Google Scholar 

  41. Yang, W. & Musser, S. M. Nuclear import time and transport efficiency depend on importin beta concentration. J. Cell Biol. 174, 951–961 (2006).

    Article  CAS  Google Scholar 

  42. Dange, T., Grunwald, D., Grunwald, A., Peters, R. & Kubitscheck, U. Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study. J. Cell Biol. 183, 77–86 (2008).

    Article  CAS  Google Scholar 

  43. Kubitscheck, U. et al. Nuclear transport of single molecules: dwell times at the nuclear pore complex. J. Cell Biol. 168, 233–243 (2005).

    Article  Google Scholar 

  44. Siebrasse, J. P. & Peters, R. Rapid translocation of NTF2 through the nuclear pore of isolated nuclei and nuclear envelopes. EMBO Rep. 3, 887–892 (2002).

    Article  CAS  Google Scholar 

  45. Ribbeck, K. & Gorlich, D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20, 1320–1330 (2001).

    Article  CAS  Google Scholar 

  46. Kustanovich, T. & Rabin, Y. Metastable network model of protein transport through nuclear pores. Biophys. J. 86, 2008–2016 (2004).

    Article  CAS  Google Scholar 

  47. Mohr, D., Frey, S., Fischer, T., Guttler, T. & Gorlich, D. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J. 28, 2541–2553 (2009).

    Article  CAS  Google Scholar 

  48. Visser, A. E., Jaunin, F., Fakan, S. & Aten, J. A. High resolution analysis of interphase chromosome domains. J. Cell Sci. 113, 2585–2593 (2000).

    CAS  PubMed  Google Scholar 

  49. Fakan, S. The functional architecture of the nucleus as analysed by ultrastructural cytochemistry. Histochem. Cell Biol. 122, 83–93 (2004).

    Article  CAS  Google Scholar 

  50. Darzacq, X. et al. Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J. Cell Biol. 173, 207–218 (2006).

    Article  CAS  Google Scholar 

  51. Tsukamoto, T. et al. Visualization of gene activity in living cells. Nature Cell Biol. 2, 871–878 (2000).

    Article  CAS  Google Scholar 

  52. Dultz, E. et al. Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J. Cell Biol. 180, 857–865 (2008).

    Article  CAS  Google Scholar 

  53. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).

    Article  CAS  Google Scholar 

  54. Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nature Struct. Mol. Biol. 14, 796–806 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Tremblay (Laval University, Canada) for GFP–Dys and GFP–mini-Dys, J. Ellenberg (EMBL Heidelberg, Germany) for the POM121-mCherry plasmid, and R. Drummer (Bar-Ilan University (BIU), Israel) for statistical analysis. This work was supported by grants to Y.S.T. from the Israel Science Foundation (grant 250/06) and the Israel Ministries of Health and Science. Y.S.T. thanks the Israel Science Foundation for the fluorescence live-cell imaging microscope. Y.B. is an Azrielli fellow. Y.S.T. is the Jane Stern Lebell Family Fellow in Life Sciences at BIU.

Author information

Authors and Affiliations

Authors

Contributions

A.M. designed, performed and analysed most of the experiments in this study. S.S. generated the Dys plasmids and stable cell lines. R.B.Y. generated the full-Dys cell line and performed the immunofluorescence experiments. S.Y. made the three-dimensional rendering of the mRNPs and chromatin. Y.B. generated the constructs E1–E6. Y.S.T. conceived the project, designed and supervised the study, and wrote the paper.

Corresponding author

Correspondence to Yaron Shav-Tal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1630 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1682 kb)

Supplementary Information

Supplementary Movie 2 (MOV 59 kb)

Supplementary Information

Supplementary Movie 3 (MOV 1679 kb)

Supplementary Information

Supplementary Movie 4 (MOV 73 kb)

Supplementary Information

Supplementary Movie 5 (MOV 134 kb)

Supplementary Information

Supplementary Movie 6 (MOV 128 kb)

Supplementary Information

Supplementary Movie 7 (MOV 288 kb)

Supplementary Information

Supplementary Movie 8 (MOV 1922 kb)

Supplementary Information

Supplementary Movie 9 (MOV 1149 kb)

Supplementary Information

Supplementary Movie 10 (MOV 870 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mor, A., Suliman, S., Ben-Yishay, R. et al. Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nat Cell Biol 12, 543–552 (2010). https://doi.org/10.1038/ncb2056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2056

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing