Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular control of kinetochore-microtubule dynamics and chromosome oscillations

Abstract

Chromosome segregation in metazoans requires the alignment of sister kinetochores on the metaphase plate. During chromosome alignment, bioriented kinetochores move chromosomes by regulating the plus-end dynamics of the attached microtubules. The bundles of kinetochore-bound microtubules alternate between growth and shrinkage, leading to regular oscillations along the spindle axis. However, the molecular mechanisms that coordinate microtubule plus-end dynamics remain unknown. Here we show that centromere protein (CENP)-H, a subunit of the CENP-A nucleosome-associated and CENP-A distal complexes (CENP-A NAC/CAD), is essential for this coordination, because kinetochores lacking CENP-H establish bioriented attachments but fail to generate regular oscillations, as a result of an uncontrolled rate of microtubule plus-end turnover. These alterations lead to rapid erratic movements that disrupt metaphase plate organization. We also show that the abundance of the CENP-A NAC/CAD subunits CENP-H and CENP-I dynamically change on individual sister kinetochores in vivo, because they preferentially bind the sister kinetochore attached to growing microtubules, and that one other subunit, CENP-Q, binds microtubules in vitro. We therefore propose that CENP-A NAC/CAD is a direct regulator of kinetochore-microtubule dynamics, which physically links centromeric DNA to microtubule plus ends.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of CENP-H abolishes sister-kinetochore oscillations and disrupts metaphase plate alignment.
Figure 2: Loss of CENP-H abrogates MT flux and abolishes control of kMT turnover.
Figure 3: Loss of CENP-H increases kMT stability.
Figure 4: CENP-A NAC/CAD regulates kMT dynamics independently of Aurora B/KMN.
Figure 5: CENP-H and CENP-I bind differentially to kinetochores attached to growing kinetochore fibres.
Figure 6: CENP-I accumulates preferentially on the sister kinetochore bound to growing MTs.
Figure 7: The CENP-A NAC/CAD subunit CENP-Q makes direct physical interactions with MTs.
Figure 8: Model for the function of the CENP-A NAC/CAD in controlling kMT dynamics.

Similar content being viewed by others

References

  1. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    Article  CAS  Google Scholar 

  2. Tanaka, T. U. & Desai, A. Kinetochore-microtubule interactions: the means to the end. Curr. Opin. Cell Biol. 20, 53–63 (2008).

    Article  CAS  Google Scholar 

  3. Skibbens, R. V., Skeen, V. P. & Salmon, E. D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push–pull mechanism. J. Cell Biol. 122, 859–875 (1993).

    Article  CAS  Google Scholar 

  4. Lewis, W. H. Changes of viscosity and cell activity. Science 89, 400 (1939).

    Google Scholar 

  5. Hughes, A. F. & Swann, M. M. Anaphase movements in the living cell. J. Exp. Biol. 25, 45–70 (1948).

    Google Scholar 

  6. Rieder, C. L. The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells. Chromosoma 84, 145–158 (1981).

    Article  CAS  Google Scholar 

  7. Zhai, Y., Kronebusch, P. J. & Borisy, G. G. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J. Cell Biol. 131, 721–734 (1995).

    Article  CAS  Google Scholar 

  8. Akhmanova, A. & Steinmetz, M. O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nature Rev. Mol. Cell Biol. 9, 309–322 (2008).

    Article  CAS  Google Scholar 

  9. Maiato, H., DeLuca, J., Salmon, E. D. & Earnshaw, W. C. The dynamic kinetochore–microtubule interface. J. Cell Sci. 117, 5461–5477 (2004).

    Article  CAS  Google Scholar 

  10. Stumpff, J., von Dassow, G., Wagenbach, M., Asbury, C. & Wordeman, L. The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev. Cell 14, 252–262 (2008).

    Article  CAS  Google Scholar 

  11. Wordeman, L., Wagenbach, M. & von Dassow, G. MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover. J. Cell Biol. 179, 869–879 (2007).

    Article  CAS  Google Scholar 

  12. Honnappa, S. et al. An EB1-binding motif acts as a microtubule tip localization signal. Cell 138, 366–376 (2009).

    Article  CAS  Google Scholar 

  13. Bieling, P. et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450, 1100–1105 (2007).

    Article  CAS  Google Scholar 

  14. Tirnauer, J. S., Canman, J. C., Salmon, E. D. & Mitchison, T. J. EB1 targets to kinetochores with attached, polymerizing microtubules. Mol. Biol. Cell 13, 4308–4316 (2002).

    Article  CAS  Google Scholar 

  15. Maiato, H. et al. Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell 113, 891–904 (2003).

    Article  CAS  Google Scholar 

  16. Pereira, A. L. et al. Mammalian CLASP1 and CLASP2 cooperate to ensure mitotic fidelity by regulating spindle and kinetochore function. Mol. Biol. Cell 17, 4526–4542 (2006).

    Article  CAS  Google Scholar 

  17. Hannak, E. & Heald, R. Xorbit/CLASP links dynamic microtubules to chromosomes in the Xenopus meiotic spindle. J. Cell Biol. 172, 19–25 (2006).

    Article  CAS  Google Scholar 

  18. Maiato, H., Khodjakov, A. & Rieder, C. L. Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres. Nature Cell Biol. 7, 42–47 (2005).

    Article  CAS  Google Scholar 

  19. DeLuca, J. G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127, 969–982 (2006).

    Article  CAS  Google Scholar 

  20. DeLuca, J., Moree, B., Hickey, J. M., Kilmartin, J. V. & Salmon, E. D. hNuf2 inhibition blocks stable kinetochore–microtubule attachment and induces mitotic cell death in HeLa cells. J. Cell Biol. 159, 549–555 (2002).

    Article  CAS  Google Scholar 

  21. Izuta, H. et al. Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11, 673–684 (2006).

    Article  CAS  Google Scholar 

  22. Foltz, D. R. et al. The human CENP-A centromeric nucleosome-associated complex. Nature Cell Biol. 8, 458–469 (2006).

    Article  CAS  Google Scholar 

  23. Okada, M. et al. The CENP-H–I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nature Cell Biol. 8, 446–457 (2006).

    Article  CAS  Google Scholar 

  24. Carroll, C. W., Silva, M. C., Godek, K. M., Jansen, L. E. & Straight, A. F. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nature Cell Biol. 11, 896–902 (2009).

    Article  CAS  Google Scholar 

  25. Hori, T. et al. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135, 1039–1052 (2008).

    Article  CAS  Google Scholar 

  26. Amano, M. et al. The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J. Cell Biol. 186, 173–182 (2009).

    Article  CAS  Google Scholar 

  27. McClelland, S. E. et al. The CENP-A NAC/CAD kinetochore complex controls chromosome congression and spindle bipolarity. EMBO J. 26, 5033–5047 (2007).

    Article  CAS  Google Scholar 

  28. Hori, T., Okada, M., Maenaka, K. & Fukagawa, T. CENP-O class proteins form a stable complex and are required for proper kinetochore function. Mol. Biol. Cell 19, 843–854 (2008).

    Article  CAS  Google Scholar 

  29. Toso, A. et al. Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly. J. Cell Biol. 184, 365–372 (2009).

    Article  CAS  Google Scholar 

  30. Jaqaman, K. et al. Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases. J. Cell Biol. 188, 665–679 (2010).

    Article  CAS  Google Scholar 

  31. Fukagawa, T. et al. CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J 20, 4603–4617 (2001).

    Article  CAS  Google Scholar 

  32. Ganem, N. J., Upton, K. & Compton, D. A. Efficient mitosis in human cells lacking poleward microtubule flux. Curr. Biol. 15, 1827–1832 (2005).

    Article  CAS  Google Scholar 

  33. Putkey, F. R. et al. Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev. Cell 3, 351–365 (2002).

    Article  CAS  Google Scholar 

  34. Salmon, E. D. & Segall, R. R. Calcium-labile mitotic spindles isolated from sea urchin eggs (Lytechinus variegatus). J. Cell Biol. 86, 355–365 (1980).

    Article  CAS  Google Scholar 

  35. Westermann, S. & Weber, K. Post-translational modifications regulate microtubule function. Nature Rev. Mol. Cell Biol. 4, 938–947 (2003).

    Article  CAS  Google Scholar 

  36. Fuller, B. G. et al. Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 453, 1132–1136 (2008).

    Article  CAS  Google Scholar 

  37. Cheeseman, I. M., Hori, T., Fukagawa, T. & Desai, A. KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Mol. Biol. Cell 19, 587–594 (2008).

    Article  CAS  Google Scholar 

  38. Johnson, V. L., Scott, M. I., Holt, S. V., Hussein, D. & Taylor, S. S. Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J. Cell Sci. 117, 1577–1589 (2004).

    Article  CAS  Google Scholar 

  39. Andrews, P. D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253–268 (2004).

    Article  CAS  Google Scholar 

  40. Lan, W. et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr. Biol. 14, 273–286 (2004).

    Article  CAS  Google Scholar 

  41. Santaguida, S. & Musacchio, A. The life and miracles of kinetochores. EMBO J. 28, 2511–2531 (2009).

    Article  CAS  Google Scholar 

  42. Harding, S. E. & Colfen, H. Inversion formulae for ellipsoid of revolution macromolecular shape functions. Anal. Biochem. 228, 131–142 (1995).

    Article  CAS  Google Scholar 

  43. Schuyler, S. C. & Pellman, D. Analysis of the size and shape of protein complexes from yeast. Methods Enzymol. 351, 150–168 (2002).

    Article  CAS  Google Scholar 

  44. Welburn, J. P. et al. The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev. Cell 16, 374–385 (2009).

    Article  CAS  Google Scholar 

  45. Meraldi, P., McAinsh, A. D., Rheinbay, E. & Sorger, P. K. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 7, R23 (2006).

    Article  Google Scholar 

  46. Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore-microtubule interface. Nature Rev. Mol. Cell Biol. 9, 33–46 (2008).

    Article  CAS  Google Scholar 

  47. Gaitanos, T. N. et al. Stable kinetochore-microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3. EMBO J. 28, 1442–1452 (2009).

    Article  CAS  Google Scholar 

  48. Wan, X. et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 137, 672–684 (2009).

    Article  CAS  Google Scholar 

  49. Liu, J., Desai, A., Onuchic, J. N. & Hwa, T. An integrated mechanobiochemical feedback mechanism describes chromosome motility from prometaphase to anaphase in mitosis. Proc. Natl Acad. Sci. USA 105, 13752–13757 (2008).

    Article  CAS  Google Scholar 

  50. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  51. Cassimeris, L. & Morabito, J. TOGp, the human homolog of XMAP215/Dis1, is required for centrosome integrity, spindle pole organization, and bipolar spindle assembly. Mol. Biol. Cell 15, 1580–1590 (2004).

    Article  CAS  Google Scholar 

  52. Draviam, V. M., Shapiro, I., Aldridge, B. & Sorger, P. K. Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells. EMBO J. 25, 2814–2827 (2006).

    Article  CAS  Google Scholar 

  53. Ganem, N. J. & Compton, D. A. The KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK. J. Cell Biol. 166, 473–478 (2004).

    Article  CAS  Google Scholar 

  54. Meraldi, P., Draviam, V. M. & Sorger, P. K. Timing and checkpoints in the regulation of mitotic progression. Dev. Cell 7, 45–60 (2004).

    Article  CAS  Google Scholar 

  55. McAinsh, A. D., Meraldi, P., Draviam, V. M., Toso, A. & Sorger, P. K. The human kinetochore proteins Nnf1R and Mcm21R are required for accurate chromosome segregation. EMBO J. 25, 4033–4049 (2006).

    Article  CAS  Google Scholar 

  56. Akhmanova, A. et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 104, 923–935 (2001).

    Article  CAS  Google Scholar 

  57. Hanisch, A., Sillje, H. H. & Nigg, E. A. Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2. EMBO J. 25, 5504–5515 (2006).

    Article  CAS  Google Scholar 

  58. Klebig, C., Korinth, D. & Meraldi, P. Bub1 regulates chromosome segregation in a kinetochore-independent manner. J. Cell Biol. 185, 841–858 (2009).

    Article  CAS  Google Scholar 

  59. Liu, D., Vader, G., Vromans, M. J., Lampson, M. A. & Lens, S. M. Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 323, 1350–1353 (2009).

    Article  CAS  Google Scholar 

  60. McClelland, S. E. & McAinsh, A. D. Hydrodynamic analysis of human kinetochore complexes during mitosis. Methods Mol. Biol. 545, 81–98 (2009).

    Article  CAS  Google Scholar 

  61. Braun, M., Drummond, D. R., Cross, R. A. & McAinsh, A. D. The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism. Nature Cell Biol. 11, 724–730 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the ETH Light Microscopy Centre and Yves Barral for microscopy support; Anna Akhmanova, Helder Maiato, Michel Steinmetz, Daniel Gerlich, Erich Nigg, Stephan Diekmann and Jennifer Lippincot-Schwarz for reagents; Jason Swedlow, Gaudenz Danuser for the joint development of the kinetochore tracking assay; Satyarebala Borusu for the EGFP–CENP-O cell line; Jennifer Winter for initial photoactivation observations; Itsaso Olasagasti for helping with the CENP-I intensity calculations; Kunyoshi Kaseda for help in analysing the photoactivation experiments; and Yves Barral, Monica Gotta, Helder Maiato, Jonathon Pines and members of the Barral, McAinsh and Meraldi laboratories for helpful discussions. Work in the McAinsh laboratory was supported by Marie Curie Cancer Care (A.D.M. and C.P.S.) and by a Fundação para a Ciência e Tecnologia fellowship (C.P.S.). A.C.A. is a member of the Life Science Zurich Graduate School in Molecular Life Sciences. Work in the Meraldi laboratory (A.C.A, R.H. and P.M.) was supported by a SNSF-Förderungprofessur and a EURYI award.

Author information

Authors and Affiliations

Authors

Contributions

Project conception, planning and data analyses were performed by A.C.A., C.P.S., A.D.M. and P.M. A.C.A. performed all experiments except the following: C.P.S. performed the photoactivation experiments and the biochemical experiments. R.H. generated the photoactivatable GFP–α-tubulin/H2B–mRFP cell line. E.W. and M.L. measured Aurora B activity. I.K. and M.A. contributed to the biochemical experiments. The manuscript was prepared by A.D.M. and P.M. with contributions by A.C.A. and C.P.S.

Corresponding authors

Correspondence to Andrew D. McAinsh or Patrick Meraldi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2364 kb)

Supplementary Information

Supplementary Movie 1 (MOV 5511 kb)

Supplementary Information

Supplementary Movie 2 (MOV 3140 kb)

Supplementary Information

Supplementary Movie 3 (MOV 367 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amaro, A., Samora, C., Holtackers, R. et al. Molecular control of kinetochore-microtubule dynamics and chromosome oscillations. Nat Cell Biol 12, 319–329 (2010). https://doi.org/10.1038/ncb2033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2033

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing