Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The peroxisomal importomer constitutes a large and highly dynamic pore


The peroxisomal protein import machinery differs fundamentally from known translocons (endoplasmic reticulum, mitochondria, chloroplasts, bacteria) as it allows membrane passage of folded, even oligomerized proteins1. However, the mechanistic principles of protein translocation across the peroxisomal membrane remain unknown. There are various models that consider membrane invagination events, vesicle fusion or the existence of large import pores. Current data show that a proteinaceous peroxisomal importomer enables docking of the cytosolic cargo-loaded receptors, cargo translocation and receptor recycling2. Remarkably, the cycling import receptor Pex5p changes its topology from a soluble cytosolic form to an integral membrane-bound form. According to the transient pore hypothesis, the membrane-bound receptor is proposed to form the core component of the peroxisomal import pore3. Here, we demonstrate that the membrane-associated import receptor Pex5p together with its docking partner Pex14p forms a gated ion-conducting channel which can be opened to a diameter of about 9 nm by the cytosolic receptor–cargo complex. The newly identified pore shows striking dynamics, as expected for an import machinery translocating proteins of variable sizes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Identification, purification and composition of a Pex5p-containing sub-complex with ion channel activity.
Figure 2: Characterization of the electrophysiological properties of the peroxisomal import pore and receptor/cargo dependent activation.
Figure 3: Analysis of gating connectivity of the activated peroxisomal import pore.
Figure 4: The transient translocation pore in the current view of receptor-cycle-mediated protein import into peroxisomes.


  1. Schnell, D. J. & Hebert, D. N. Protein translocons: multifunctional mediators of protein translocation across membranes. Cell 112, 491–505 (2003).

    CAS  Article  Google Scholar 

  2. Agne, B. et al. Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. Mol. Cell 11, 635–646 (2003).

    CAS  Article  Google Scholar 

  3. Erdmann, R. & Schliebs, W. Peroxisomal matrix protein import: the transient pore model. Nature Rev. Mol. Cell Biol. 6, 738–742 (2005).

    CAS  Article  Google Scholar 

  4. Walton, P. A., Hill, P. E. & Subramani, S. Import of stably folded proteins into peroxisomes. Mol. Biol. Cell 6, 675–683 (1995).

    CAS  Article  Google Scholar 

  5. Gould, S. J. & Collins, C. S. Peroxisomal-protein import: is it really that complex? Nature Rev. Mol. Cell Biol. 3, 382–389 (2002).

    CAS  Article  Google Scholar 

  6. Lemmens, M. et al. Single-channel analysis of a large conductance channel in peroxisomes from rat liver. Biochim. Biophys. Acta 984, 351–359 (1989).

    CAS  Article  Google Scholar 

  7. Labarca, P., Wolff, D., Soto, U., Necochea, C. & Leighton, F. Large cation-selective pores from rat liver peroxisomal membranes incorporated to planar lipid bilayers. J. Membr. Biol. 94, 285–291 (1986).

    CAS  Article  Google Scholar 

  8. Stanley, W. A. et al. Recognition of a functional peroxisome type 1 target by the dynamic import receptor pex5p. Mol. Cell 24, 653–663 (2006).

    CAS  Article  Google Scholar 

  9. Schliebs, W. & Kunau, W. H. PTS2 co-receptors: diverse proteins with common features. Biochim. Biophys. Acta 1763, 1605–1612 (2006).

    CAS  Article  Google Scholar 

  10. Platta, H. W. & Erdmann, R. Peroxisomal dynamics. Trends Cell Biol. 17, 474–484 (2007).

    CAS  Article  Google Scholar 

  11. Gouveia, A. M., Reguenga, C., Oliveira, M. E., Sa-Miranda, C. & Azevedo, J. E. Characterization of peroxisomal Pex5p from rat liver. Pex5p in the Pex5p-Pex14p membrane complex is a transmembrane protein. J. Biol. Chem. 275, 32444–32451 (2000).

    CAS  Article  Google Scholar 

  12. Platta, H. W. et al. Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. J. Cell Biol. 177, 197–204 (2007).

    CAS  Article  Google Scholar 

  13. Platta, H. W., Grunau, S., Rosenkranz, K., Girzalsky, W. & Erdmann, R. Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nature Cell Biol. 7, 817–822 (2005).

    CAS  Article  Google Scholar 

  14. Miyata, N. & Fujiki, Y. Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol. Cell Biol. 25, 10822–10832 (2005).

    CAS  Article  Google Scholar 

  15. Elgersma, Y. et al. Analysis of the carboxy-terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae. J. Biol. Chem. 9, 185–197 (1996).

    Google Scholar 

  16. Smart, O. S., Breed, J., Smith, G. R. & Sansom, M. S. A novel method for structure-based prediction of ion channel conductance properties. Biophys. J. 72, 1109–1126 (1997).

    CAS  Article  Google Scholar 

  17. Neupert, W. & Herrmann, J. M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76, 723–49 (2007).

    CAS  Article  Google Scholar 

  18. Hill, K. et al. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins [see comment]. Nature 395, 516–521 (1998).

    CAS  Article  Google Scholar 

  19. Meinecke, M. et al. Tim50 maintains the permeability barrier of the mitochondrial inner membrane. Science 312, 1523–1526 (2006).

    CAS  Article  Google Scholar 

  20. Wirth, A. et al. The Sec61p complex is a dynamic precursor activated channel. Mol. Cell 12, 261–268 (2003).

    CAS  Article  Google Scholar 

  21. Kovermann, P. et al. Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel. Mol. Cell 9, 363–373 (2002).

    CAS  Article  Google Scholar 

  22. Hinnah, S. C., Hill, K., Wagner, R., Schlicher, T. & Soll, J. Reconstitution of a chloroplast protein import channel. EMBO J. 16, 7351–7360 (1997).

    CAS  Article  Google Scholar 

  23. Heins, L. et al. The preprotein conducting channel at the inner envelope membrane of plastids. EMBO J. 21, 2616–2625 (2002).

    CAS  Article  Google Scholar 

  24. Rehling, P. et al. Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor Pex5p. J. Biol. Chem. 275, 3593–3602 (2000).

    CAS  Article  Google Scholar 

  25. Titorenko, V. I., Nicaud, J. M., Wang, H., Chan, H. & Rachubinski, R. A. Acyl-CoA oxidase is imported as a heteropentameric, cofactor-containing complex into peroxisomes of Yarrowia lipolytica. J. Cell Biol. 156, 481–494 (2002).

    CAS  Article  Google Scholar 

  26. Rehling, P. et al. Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299, 1747–1751 (2003).

    CAS  Article  Google Scholar 

  27. Azevedo, J. E. & Schliebs, W. Pex14p, more than just a docking protein. Biochim. Biophys. Acta 1763, 1574–1584 (2006).

    CAS  Article  Google Scholar 

  28. Carvalho, A. F. et al. The N-terminal half of the peroxisomal cycling receptor Pex5p is a natively unfolded domain. J. Mol. Biol. 356, 864–875 (2006).

    CAS  Article  Google Scholar 

  29. Kerssen, D. et al. Membrane association of the cycling peroxisome import receptor Pex5p. J. Biol. Chem. 281, 27003–27015 (2006).

    CAS  Article  Google Scholar 

  30. Salomons, F. A., Kiel, J. A., Faber, K. N., Veenhuis, M. & van der Klei, I. J. Overproduction of Pex5p stimulates import of alcohol oxidase and dihydroxyacetone synthase in a Hansenula polymorpha Pex14 null mutant. J. Biol. Chem. 275, 12603–12611 (2000).

    CAS  Article  Google Scholar 

  31. Grunau, S. et al. Peroxisomal targeting of PTS2-pre-import complexes in the yeast Saccharomyces cerevisiae. Traffic 10, 451–460 (2009).

    CAS  Article  Google Scholar 

  32. van der Laan, M. et al. Motor-free mitochondrial presequence translocase drives membrane integration of preproteins. Nature Cell Biol. 9, 1152–9 (2007).

    CAS  Article  Google Scholar 

Download references


This work was supported by grants from the Deutsche Forschungsgemeinschaft SFB431 (M.M. and R.W.), SFB642 (R.E.), DFGSchl 584/1-2 (WS) and the Fonds der Chemischen Industrie. We thank Wolf Kunau for helpful comments and discussion.

Author information

Authors and Affiliations



M.M. and V.K. performed all electrophysiological measurements and analysed data; C.C. and S.B. prepared and analysed the samples and reconstituted them into proteoliposomes; M.M., W.S., R.W. and R.E. designed the study and wrote the manuscript.

Corresponding author

Correspondence to Ralf Erdmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2989 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meinecke, M., Cizmowski, C., Schliebs, W. et al. The peroxisomal importomer constitutes a large and highly dynamic pore. Nat Cell Biol 12, 273–277 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing