Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1

Abstract

Parkinson's disease is the most common neurodegenerative movement disorder. Mutations in PINK1 and PARKIN are the most frequent causes of recessive Parkinson's disease. However, their molecular contribution to pathogenesis remains unclear. Here, we reveal important mechanistic steps of a PINK1/Parkin-directed pathway linking mitochondrial damage, ubiquitylation and autophagy in non-neuronal and neuronal cells. PINK1 kinase activity and its mitochondrial localization sequence are prerequisites to induce translocation of the E3 ligase Parkin to depolarized mitochondria. Subsequently, Parkin mediates the formation of two distinct poly-ubiquitin chains, linked through Lys 63 and Lys 27. In addition, the autophagic adaptor p62/SQSTM1 is recruited to mitochondrial clusters and is essential for the clearance of mitochondria. Strikingly, we identified VDAC1 (voltage-dependent anion channel 1) as a target for Parkin-mediated Lys 27 poly-ubiquitylation and mitophagy. Moreover, pathogenic Parkin mutations interfere with distinct steps of mitochondrial translocation, ubiquitylation and/or final clearance through mitophagy. Thus, our data provide functional links between PINK1, Parkin and the selective autophagy of mitochondria, which is implicated in the pathogenesis of Parkinson's disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Pathogenic Parkin mutations interfere with mitochondrial translocation and/or mitochondrial clearance.
Figure 2: Mitophagy in neuronal Parkinson's disease-relevant SH-SY5Y cells is dependent on functional Parkin protein levels.
Figure 3: PINK1 expression is a prerequisite for Parkin activation/translocation.
Figure 4: Parkin-directed mitophagy involves poly-ubiquitin signals of specific lysine linkages.
Figure 5: Parkin-dependent mitophagy requires the ubiquitin-autophagy adaptor protein p62.
Figure 6: VDAC1 is the mitochondrial target of Parkin-catalysed ubiquitylation in response to mitochondrial membrane depolarization.
Figure 7: Pathogenic Parkin mutations fail to ubiquitylate VDAC1 in neuronal SH-SY5Y cells.
Figure 8: VDAC1 is required for PINK1/Parkin-directed mitophagy.

References

  1. 1

    Savitt, J. M., Dawson, V. L. & Dawson, T. M. Diagnosis and treatment of Parkinson disease: molecules to medicine. J. Clin. Invest. 116, 1744–1754 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Goedert, M. α-synuclein and neurodegenerative diseases. Nature Rev. Neurosci. 2, 492–501 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Shults, C. W. Lewy bodies. Proc. Natl Acad. Sci. USA 103, 1661–1668 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet. 25, 302–305 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Rogaeva, E. et al. Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease. Arch. Neurol. 61, 1898–1904 (2004).

    Article  Google Scholar 

  7. 7

    Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Kahle, P. J. & Haass, C. How does parkin ligate ubiquitin to Parkinson's disease? EMBO Rep. 5, 681–685 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Ikeda, F. & Dikic, I. Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep. 9, 536–542 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Lim, K. L. et al. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J. Neurosci. 25, 2002–2009 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Zhou, C. et al. The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc. Natl Acad. Sci. USA 105, 12022–12027 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Kim, Y. et al. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem. Biophys. Res. Commun. 377, 975–980 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Um, J. W., Stichel-Gunkel, C., Lubbert, H., Lee, G. & Chung, K. C. Molecular interaction between parkin and PINK1 in mammalian neuronal cells. Mol. Cell Neurosci. 40, 421–432 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Xiong, H. et al. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J. Clin. Invest. 119, 650–660 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Shiba, K. et al. Parkin stabilizes PINK1 through direct interaction. Biochem. Biophys. Res. Commun. 383, 331–335 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Clark, I. E. et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Exner, N. et al. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J. Neurosci. 27, 12413–12418 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Park, J. et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Poole, A. C. et al. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc. Natl Acad. Sci. USA 105, 1638–1643 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Hampe, C., Ardila-Osorio, H., Fournier, M., Brice, A. & Corti, O. Biochemical analysis of Parkinson's disease-causing variants of Parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity. Hum. Mol. Genet. 15, 2059–2075 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Hristova, V. A., Beasley, S. A., Rylett, R. J. & Shaw, G. S. Identification of a novel Zn2+-binding domain in the autosomal recessive juvenile parkinson's related E3 ligase parkin. J. Biol. Chem. 284, 14978–14986 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Rothfuss, O. et al. Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair. Hum. Mol. Genet. 18, 3832–3850 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Beilina, A. et al. Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc. Natl Acad. Sci. USA 102, 5703–5708 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Ikeda, H. & Kerppola, T. K. Lysosomal localization of ubiquitinated Jun requires multiple determinants in a lysine-27-linked polyubiquitin conjugate. Mol. Biol. Cell 19, 4588–4601 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Tan, J. M. et al. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum. Mol. Genet. 17, 431–439 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Olzmann, J. A. et al. Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J. Cell Biol. 178, 1025–1038 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Lim, K. L., Dawson, V. L. & Dawson, T. M. Parkin-mediated lysine 63-linked polyubiquitination: a link to protein inclusions formation in Parkinson's and other conformational diseases? Neurobiol. Aging 27, 524–529 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Abu-Hamad, S. et al. The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. J. Cell Sci. 122, 1906–1916 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Bjorkoy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).

    Article  Google Scholar 

  33. 33

    Kim, P. K., Hailey, D. W., Mullen, R. T. & Lippincott-Schwartz, J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl Acad. Sci. USA 105, 20567–20574 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Babu, J. R., Geetha, T. & Wooten, M. W. Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J. Neurochem. 94, 192–203 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Long, J. et al. Ubiquitin recognition by the ubiquitin-associated domain of p62 involves a novel conformational switch. J. Biol. Chem. 283, 5427–5440 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Seibenhener, M. L. et al. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell Biol. 24, 8055–8068 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Matsuda, N. et al. Diverse effects of pathogenic mutations of Parkin that catalyze multiple monoubiquitylation in vitro. J. Biol. Chem. 281, 3204–3209 (2006).

    CAS  Article  Google Scholar 

  38. 38

    Hasegawa, T. et al. Parkin protects against tyrosinase-mediated dopamine neurotoxicity by suppressing stress-activated protein kinase pathways. J. Neurochem. 105, 1700–1715 (2008).

    CAS  Article  Google Scholar 

  39. 39

    Wu-Baer, F., Lagrazon, K., Yuan, W. & Baer, R. The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J. Biol. Chem. 278, 34743–34746 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to O. Corti and R. Baer for providing Parkin and ubiquitin mutants, and to R. de Silva for providing the pDsRed2-Mito construct. We thank Thomas Gasser for support. This work was supported by grants from the fortüne-program of the Medical Faculty of the University of Tübingen to W.S. (1667-0-0 and 1842-0-0), by the German National Genome Research Network (NGFNplus, 01GS08134) to P.J.K., and by the Hertie Foundation. K.M.H. is a NEUROTRAIN Early Stage Research Training fellow funded through the European Union research program FP6.

Author information

Affiliations

Authors

Contributions

S.G., K.M.H., and W.S. were responsible for the experimental work. D.S. provided technical assistance. O.C.R. provided materials. S.G., F.C.F. and W.S. analysed data. F.C.F. and P.J.K. provided intellectual and/or financial support. W.S. planned the project, designed experiments and wrote the manuscript. All authors discussed the data and commented on the manuscript.

Corresponding authors

Correspondence to Philipp J. Kahle or Wolfdieter Springer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4557 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geisler, S., Holmström, K., Skujat, D. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12, 119–131 (2010). https://doi.org/10.1038/ncb2012

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing