Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells

An Erratum to this article was published on 01 June 2011

This article has been updated

Abstract

The continuing rise in atmospheric CO2 causes stomatal pores in leaves to close and thus globally affects CO2 influx into plants, water use efficiency and leaf heat stress1,2,3,4. However, the CO2-binding proteins that control this response remain unknown. Moreover, which cell type responds to CO2, mesophyll or guard cells, and whether photosynthesis mediates this response are matters of debate5,6,7,8. We demonstrate that Arabidopsis thaliana double-mutant plants in the β-carbonic anhydrases βCA1 and βCA4 show impaired CO2-regulation of stomatal movements and increased stomatal density, but retain functional abscisic-acid and blue-light responses. βCA-mediated CO2-triggered stomatal movements are not, in first-order, linked to whole leaf photosynthesis and can function in guard cells. Furthermore, guard cell βca-overexpressing plants exhibit instantaneous enhanced water use efficiency. Guard cell expression of mammalian αCAII complements the reduced sensitivity of ca1 ca4 plants, showing that carbonic anhydrase-mediated catalysis is an important mechanism for βCA-mediated CO2-induced stomatal closure and patch clamp analyses indicate that CO2/HCO3 transfers the signal to anion channel regulation. These findings, together with ht1-2 (ref. 9) epistasis analysis demonstrate that carbonic anhydrases function early in the CO2 signalling pathway, which controls gas-exchange between plants and the atmosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disruption of the carbonic anhydrases βCA1 and βCA4 greatly impairs CO2-induced stomatal movements, but not responses to blue light and abscisic acid.
Figure 2: Introduction of wild-type genomic βca complements the reduced CO2 sensitivity of ca1 ca4 plants.
Figure 3: Leaf photosynthesis is not directly linked to βCA-mediated CO2-triggered stomatal responses.
Figure 4: βca expression in ca1 ca4 guard cells restores CO2 responses and βca overexpressing plants show improved instantaneous water use efficiency.
Figure 5: HT1 epistasis analysis, human αCAII expression in guard cells restores CO2 responsiveness and HCO3 regulation of anion channels.

Similar content being viewed by others

Change history

  • 16 May 2011

    In the version of this letter initially published online and in print, the competing financial interests were incomplete.

References

  1. Sellers, P. J. et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275, 502–509 (1997).

    Article  CAS  Google Scholar 

  2. Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264 (2001).

    Article  Google Scholar 

  3. LaDeau, S. L. & Clark, J. S. Rising CO2 levels and the fecundity of forest trees. Science 292, 95–98 (2001).

    Article  CAS  Google Scholar 

  4. Battisti, D. S. & Naylor, R. L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323, 240–244 (2009).

    Article  CAS  Google Scholar 

  5. von Caemmerer, S. et al. Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco. J. Exp. Bot. 55, 1157–1166 (2004).

    Article  CAS  Google Scholar 

  6. Messinger, S. M., Buckley, T. N. & Mott, K. A. Evidence for involvement of photosynthetic processes in the stomatal response to CO2 . Plant Physiol. 140, 771–778 (2006).

    Article  CAS  Google Scholar 

  7. Roelfsema, M. R. et al. Guard cells in albino leaf patches do not respond to photosynthetically active radiation, but are sensitive to blue light, CO2 and abscisic acid. Plant Cell Environ. 29, 1595–1605 (2006).

    Article  CAS  Google Scholar 

  8. Mott, K. A., Sibbernsen, E. D. & Shope, J. C. The role of the mesophyll in stomatal responses to light and CO2 . Plant Cell Environ. 31, 1299–1306 (2008).

    Article  CAS  Google Scholar 

  9. Hashimoto, M. et al. Arabidopsis HT1 kinase controls stomatal movements in response to CO2 . Nature Cell Biol. 8, 391–397 (2006).

    Article  CAS  Google Scholar 

  10. Webb, A. A. & Hetherington, A. M. Convergence of the abscisic acid, CO2, and extracellular calcium signal transduction pathways in stomatal guard cells. Plant Physiol. 114, 1557–1560 (1997).

    Article  CAS  Google Scholar 

  11. Leymarie, J., Vavasseur, A. & Lasceve, G. CO2 sensing in stomata of abi1–1 and abi2–1 mutants of Arabidopsis thaliana. Plant Physiol. Biochem. 36, 539–543 (1998).

    Article  CAS  Google Scholar 

  12. Young, J. J. et al. CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. Proc. Natl Acad. Sci. USA 103, 7506–7511 (2006).

    Article  CAS  Google Scholar 

  13. Vahisalu, T. et al. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452, 487–491 (2008).

    Article  CAS  Google Scholar 

  14. Negi, J. et al. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452, 483–486 (2008).

    Article  CAS  Google Scholar 

  15. Lee, M. et al. The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2 . Nature Cell Biol. 10, 1217–1223 (2008).

    Article  CAS  Google Scholar 

  16. Marten, H. et al. Silencing of NtMPK4 impairs CO2-induced stomatal closure, activation of anion channels and cytosolic Ca2+ signals in Nicotiana tabacum guard cells. Plant J. 55, 698–708 (2008).

    Article  CAS  Google Scholar 

  17. Gehlen, J. et al. Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C3 plant Solanum tuberosum. Plant Mol. Biol. 32, 831–848 (1996).

    Article  CAS  Google Scholar 

  18. Cousins, A. B. et al. The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. Plant Physiol. 145, 1006–1017 (2007).

    Article  CAS  Google Scholar 

  19. Kinoshita, T. et al. PHOT1 and PHOT2 mediate blue light regulation of stomatal opening. Nature 414, 656–660 (2001).

    Article  CAS  Google Scholar 

  20. Mori, I. C. et al. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol. 4, 1749–1762 (2006).

    Article  CAS  Google Scholar 

  21. Leonhardt, N. et al. Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16, 596–615 (2004).

    Article  CAS  Google Scholar 

  22. Yang, Y., Costa, A., Leonhardt, N., Siegel, R. S. & Schroeder, J. I. Isolation of a strong Arabidopsis guard cell promoter and its potential role as a research tool. Pl. Methods 4, 1–15 (2008).

    Google Scholar 

  23. Zhao, Z., Zhang, W., Stanley, B. A. & Assmann, S. M. Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell 20, 3210–3226 (2008).

    Article  CAS  Google Scholar 

  24. Fabre, N., Reiter, I. M., Becuwe-Linka, N., Genty, B. & Rumeau, D. Characterization and expression analysis of genes encoding α and β carbonic anhydrases in Arabidopsis. Plant Cell Environ. 30, 617–629 (2007).

    Article  CAS  Google Scholar 

  25. Kawamura, Y. & Uemura, M. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J. 36, 141–154 (2003).

    Article  CAS  Google Scholar 

  26. Froehlich, J. E. et al. Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. J. Proteome Res. 2, 413–425 (2003).

    Article  Google Scholar 

  27. Uehlein, N. et al. Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20, 648–657 (2008).

    Article  CAS  Google Scholar 

  28. Bergmann, D. C. & Sack, F. D. Stomatal development. Annu. Rev. Plant Biol. 58, 163–181 (2007).

    Article  CAS  Google Scholar 

  29. Shpak, E. D., McAbee, J. M., Pillitteri, L. J. & Torii, K. U. Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309, 290–293 (2005).

    Article  CAS  Google Scholar 

  30. Lu, J. et al. Effect of human carbonic anhydrase II on the activity of the human electrogenic Na+/HCO3- cotransporter NBCe1-A in Xenopus oocytes. J. Biol. Chem. 281, 19241–19250 (2006).

    Article  CAS  Google Scholar 

  31. Lake, J. A., Quick, W. P., Beerling, D. J. & Woodward, F. I. Plant development. Signals from mature to new leaves. Nature 411, 154 (2001).

    Article  CAS  Google Scholar 

  32. Jacob, E. J. Water: under pressure. Nature 452, 269 (2008).

    Article  Google Scholar 

  33. Price, N. D., Reed, J. L. & Palsson, B. O. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Rev. Microbiol. 2, 886–897 (2004).

    Article  CAS  Google Scholar 

  34. Brearley, J., Venis, M. A. & Blatt, M. R. The effect of elevated CO2 concentrations on K+ and anion channels of Vicia faba L. guard cells. Planta 203, 145–154 (1997).

    Article  CAS  Google Scholar 

  35. Witte, C. P., Noel, L. D., Gielbert, J., Parker, J. E. & Romeis, T. Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope. Plant Mol. Biol. 55, 135–147 (2004).

    Article  CAS  Google Scholar 

  36. Boisson-Dernier, A., Frietsch, S., Kim, T. H., Dizon, M. B. & Schroeder, J. I. The peroxin loss-of-function mutation abstinence by mutual consent disrupts male-female gametophyte recognition. Curr. Biol. 18, 63–68 (2008).

    Article  CAS  Google Scholar 

  37. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K. & Scheible, W. R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139, 5–17 (2005).

    Article  CAS  Google Scholar 

  38. Udvardi, M. K., Czechowski, T. & Scheible, W. R. Eleven golden rules of quantitative RT-PCR. Plant Cell 20, 1736–1737 (2008).

    Article  CAS  Google Scholar 

  39. Wilbur, K. M. & Anderson, N. G. Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 11 (1948).

  40. Genty, B., Briantais, J. M. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochem. Biophys. Acta 990, 87–92 (1989).

    CAS  Google Scholar 

  41. Allen, G. J., Murata, Y., Chu, S. P., Nafisi, M. & Schroeder, J. I. Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant era1–2. Plant Cell 14, 1649–1662 (2002).

    Article  CAS  Google Scholar 

  42. Natelson, S. & Nobel, D. More on blood bicarbonate measurement. Clinical Chem. 24, 1082–1083 (1978).

    CAS  Google Scholar 

  43. Pigott, J. D. Coupled ion-selective electrode measurement of aqueous carbonate and bicarbonate ion activities. Anal. Chem. 61, 638–640 (1989).

    Article  CAS  Google Scholar 

  44. Feys, B. J. et al. Arabidopsis senescence-associated gene101 stabilizes and signals within an enhanced disease susceptibility1 complex in plant innate immunity. Plant Cell 17, 2601–2613 (2005).

    Article  CAS  Google Scholar 

  45. Robatzek, S., Chinchilla, D. & Boller, T. Light-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev. 20, 537–543 (2006).

    Article  CAS  Google Scholar 

  46. Kubo, M. et al. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 19, 1855–1860 (2005).

    Article  CAS  Google Scholar 

  47. Walter, M. et al. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40, 428–438 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Maktabi, J. Young and C. Engineer for preliminary analyses of βca mutants, R. Xu for assistance, S. Zeeman for suggestions and K. Iba (Kyushu University, Japan) for providing ht1-2 seeds. This research was supported by NSF (MCB0918220), NIH (GM060396) and in part by DOE (DE-FG02-03ER15449) grants (to J.I.S.) and by fellowships from the Swedish Research Council Formas (to M.I.-N.), the Deutsche Forschungsgemeinschaft (to M.B.), EMBO (to J.M.K.) and in part from the King Abdullah University of Science and Technology (KAUST; No. KUS-F1-021-31 to H.H.).

Author information

Authors and Affiliations

Authors

Contributions

J.I.S. conceived the project and proposed the experimental design. H.H., A. B.-D. and M.I.-N. performed most of the experiments and contributed equally to the work. M.B. performed CA activity analyses. S.X. performed patch clamp experiments. A.R. contributed to stomatal movement and stomatal index measurements. J.G. performed norflurazon experiments. J.M.K. analysed CO2/HCO3-binding protein-encoding gene expression patterns and isolated the initial CA, PEPC and Rubisco T-DNA insertion lines. J.I.S., H.H., A.B.-D. and M.I.-N. wrote the paper.

Corresponding author

Correspondence to Julian I. Schroeder.

Ethics declarations

Competing interests

The University of California, San Diego, has submitted a patent form on behalf of J.I.S., M.I-N., J.M.K., H.H. and A.B.D. on aspects of the findings.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3329 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Boisson-Dernier, A., Israelsson-Nordström, M. et al. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat Cell Biol 12, 87–93 (2010). https://doi.org/10.1038/ncb2009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing