KLF17 is a negative regulator of epithelial–mesenchymal transition and metastasis in breast cancer


Metastasis is a complex multistep process, which requires the concerted action of many genes and is the primary cause of cancer death. Both pathways that regulate metastasis enhancement and those that regulate its suppression contribute to the tumour dissemination process. To identify new metastasis suppressors, we set up a forward genetic screen in a mouse model. We transduced a genome-wide RNA interference (RNAi) library into the non-metastatic 168FARN breast cancer cell line and orthotopically transplanted the cells into mouse mammary fat pads. We then selected cells that could metastasize to the lung and identified an RNAi for the KLF17 gene. Conversely, we demonstrate that ectopic expression of KLF17 in a highly metastatic 4T1 breast cancer cell line inhibits the ability of cells to metastasize from the mammary fat pad to the lung. We also show that suppression of KLF17 expression promotes breast cancer cell invasion and epithelial–mesenchymal transition (EMT), and that KLF17 protein functions by directly binding to the promoter region of Id1 (which encodes a key metastasis regulator in breast cancer) to inhibit its transcription. Finally, we demonstrate that KLF17 expression is significantly downregulated in primary human breast cancer samples and that the combined expression pattern of KLF17 and Id1 can serve as a potential biomarker for lymph node metastasis in breast cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Identification of KLF17 as a metastasis-suppressing gene.
Figure 2: KLF17 suppresses tumour metastasis in vivo.
Figure 3: Suppression of KLF17 expression promotes tumour cell migration, invasion and EMT.
Figure 4: KLF17 directly binds to the promoter of Id1 and suppresses Id1 expression.
Figure 5: KLF17 and Id1 expression in breast cancer cell lines and their predictive value of lymph node metastasis in human primary breast cancer samples.

Accession codes


Gene Expression Omnibus


  1. 1

    Gupta, G. P. & Massague, J. Cancer Metastasis: building a framework. Cell 127, 679 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nature Rev. Med. 12, 895–904 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Fidler, I. J. The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nature Rev. Cancer 3, 1–6 (2003).

    Article  Google Scholar 

  4. 4

    Steeg, P. S. Metastasis suppressors alter the signal transduction of cancer cells. Nature Rev. Cancer 3, 55–63 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Eccles, S. A. & Welch, D. R. Metastasis: recent discoveries and novel treatment strategies. Lancet 369, 1742–1757 (2007).

    CAS  Article  Google Scholar 

  9. 9

    Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer 2, 563–572 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Stafford, L. J., Vaidya, K. S. & Welch, D. R. Metastasis suppressor genes in cancer. Int. J. Biochem. Cell Biol. 40, 874–891 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Yoshida, B. A., Sokoloff, M. M., Welch, D. R. & Rinker-Schaeffer, C. W. Metastasis-suppressor genes: a review and perspective on an emerging field. J. Natl Cancer Inst. 92, 1717–1730 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Grimm, S. The art and design of genetic screens: mammalian culture cells. Nature Rev. Genet. 5, 179–189 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Schlabach, M. et al. Cancer proliferation gene discovery through functional genomics. Science 319, 620–624 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Dasgupta, R., Kaykas, A., Moon, R. T. & Perrimon, N. Functional genomic analysis of the Wnt-Wingless signaling pathway. Science 308, 826–832 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systemic RNA interference. Nature 408, 325–330 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Paddison, P. J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Berns K et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–7 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Kolfschoten, I. G. et al. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity Cell 121, 849–58 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Aslakson, C. J. & Miller, F. R. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 52, 1399–1405 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Aslakson, C. J., Rak, J. W., Miller, B. E. & Miller, F. R. Differential influence of organ site on three subpopulations of a single mouse mammary tumor at two distinct steps in metastasis. Int. J. Cancer 47, 466–472 (1991).

    CAS  Article  Google Scholar 

  21. 21

    Miller, F., Jones, R. F., Jacob, J., Kong, Y. C., Wei, Y. Z. From breast cancer immunology to her-2 DNA vaccine and autoimmune sequelae. Breast Dis. 20, 43–51 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Dexter, D. L. et al. Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res. 38, 3174–3181 (1978).

    CAS  PubMed  Google Scholar 

  23. 23

    Gumireddy, K. et al. An in vivo selection for metastasis promoting genes in the mouse. Proc. Natl Acad. Sci. USA 104, 6696–6701 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Lomberk, G., Urrutia, R. The family feud: turning off Sp1 by Sp1-like KLF proteins. Biochem. J. 392, 1–11 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Kaczynski, J., Cook, T., Urrutia, R. Sp1- and Krüppel-like transcription factors. Genome Biol. 4, 206 (2003).

    Article  Google Scholar 

  26. 26

    Vliet, J. V. et al. Human KLF17 is a new member of the Sp/KLF family of transcription factors. Genomics 87, 474–482 (2005).

    Article  Google Scholar 

  27. 27

    Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Nuez, B., Michalovich, D., Bygrave, A., Ploemacher, R., Grosveld, F. Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature 375, 316–318 (1995).

    CAS  Article  Google Scholar 

  29. 29

    Perkins, A. C., Sharpe, A. H. & Orkin, S. H. Lethal β-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375, 318–322 (1995).

    CAS  Article  Google Scholar 

  30. 30

    Kuo, C. T., Veselits, M. L., Leiden, J. M. LKLF: a transcriptional regulator of single-positive T cell quiescence and survival. Science 277, 1986–1990 (1997).

    CAS  Article  Google Scholar 

  31. 31

    Foster, K. W. et al. Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Cancer Res. 60, 6488–6495 (2000).

    CAS  PubMed  Google Scholar 

  32. 32

    Narla, G. et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 294, 2563–2566 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Ghaleb, A. M. et al. Krüppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res. 15, 92–96 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Yan, W., Burns, K. H., Ma, L., Matzuk, M. M. Identification of Zfp393, a germ-cell specific gene encoding a novel zinc finger protein. Mech. of Dev. 118, 233–239 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Hugo, H. et al. Epithelial-mesenchymal and mesenchymal-epithelial transition in carcinoma progression. J. Cell. Physiol. 213, 374–383 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Huber, M. A., Kraut, N. & Beug, H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548–558 (2005).

    CAS  Article  Google Scholar 

  37. 37

    Zavadil, J., Cermak, L., Soto-Nieves, N., Bottinger, E. P. Integration of TGF-β/Smad and Jagged1/Notch signaling in endothelial to mesenchymal transition. EMBO J. 23, 1155–1165 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Liebner, S. et al. β-catinin is required for endothelial-mesenchymal transformation furing heart cushion development in the mouse. J. Cell. Biol. 166, 359–367 (2004).

    CAS  Article  Google Scholar 

  39. 39

    Moody, S. E. et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8, 197–209 (2005).

    CAS  Article  Google Scholar 

  40. 40

    Hartwell, K. A. et al. The spemann organizer gene, goosecoid, promotes tumor metastasis. Proc. Natl. Acad. Sci. USA 103, 18969–18974 (2006).

    CAS  Article  Google Scholar 

  41. 41

    Ruzinova, M. B. & Benezra, R. Id proteins in development, cell cycle and cancer. Trends in Cell Biol. 13, 410–418 (2003).

    CAS  Article  Google Scholar 

  42. 42

    Sikder, H. A., Devlin, M. K., Dunlap, S., Ryu, B. & Alani, R. Id proteins in cell growth and tumorigenesis Cancer Cell 3, 525–530 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Ivarone, A. & Lasorella, A. ID proteins as targets in cancer and tools in neurobiology. Trends in Mol. Med. 12, 588–594 (2006).

    Article  Google Scholar 

  44. 44

    Ying, Q., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292 (2003).

    CAS  Article  Google Scholar 

  45. 45

    Li, Y., Yang, J., Luo, J., Dedhar, S., Liu, Y. Tubular epithelial cell dedifferentiation is driven by the helix-loop-helix transcriptional inhibitor Id1. J. Am. Soc. Nephrol. 18, 449–460 (2007).

    Article  Google Scholar 

  46. 46

    Lyden, D. et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumor xenograft. Nature 401, 670–677 (1999).

    CAS  Article  Google Scholar 

  47. 47

    Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    CAS  Article  Google Scholar 

  48. 48

    Swarbrick, A., Roy, E., Allen, T. & Bishop, J. M. Id1 cooperates with oncogenic Ras to induce metastastic mammary carcinoma by subversion of the cellular senescence response. Proc. Natl. Acad. Sci. USA 105, 5402–5407 (2008).

    CAS  Article  Google Scholar 

  49. 49

    Schoppmann, S. F. et al. Overexpression of Id-1 is associated with poor clinical outcome in node negative breast cancer. Int. J. Cancer 104, 677–682 (2003).

    CAS  Article  Google Scholar 

  50. 50

    Lin, C. Q. et al. A role for Id-1 in the aggressive phenotype and steroid hormone response of human breast cancer cells. Cancer Res. 60, 1332–1340 (2000).

    CAS  PubMed  Google Scholar 

  51. 51

    Gupta, G. P. et al. ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc. Natl. Acad. Sci. USA 104, 19506–19511 (2007).

    CAS  Article  Google Scholar 

  52. 52

    Henke, E. et al. Peptide-conjugated antise oligonucleotides for targeted inhibition of a transcription regulator in vivo. Nature Biotechnol. 26, 91–100 (2008).

    CAS  Article  Google Scholar 

  53. 53

    McAllister, S. D., Christian, R. T., Horowitz, M. P., Garcia, A. & Desprez, P. Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. Mol. Cancer Ther. 6, 2921–2927 (2007).

    CAS  Article  Google Scholar 

  54. 54

    Kataoka, M. et al. An agent that increases tumor suppressor transgene product coupled with systemic transgene delivery inhibits growth of metastatic lung cancer in vivo. Cancer Res. 58, 4761–4765 (1998).

    CAS  PubMed  Google Scholar 

  55. 55

    Huang, Q. et al. The microRNAs miR-373 and miR-520c promote tumor invasion and metastasis. Nature Cell Biol. 10, 202–210 (2008).

    CAS  Article  Google Scholar 

  56. 56

    Mukhopadhyay, A., Deplancke, B., Walhout, A. J. M., Tissenbaum, H. A. Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real- time PCR to study transcription factors binding to DNA in Caenorhabditis elegans. Nature Protoc. 3, 698–709 (2008).

    CAS  Article  Google Scholar 

Download references


We would like to thank F. Miller for providing 168FARN and 4T1 cells, R. Weinberg for providing the HMEL cell line, J. Price for providing the MDA-MB-435 cell line, C. Chang and W. Horng for assistance with microarray analysis and J. Hayden and F. Keeney for assistance with microscopy. Q.H. is supported by the Breast Cancer Alliance, Pardee Foundation, V Foundation. Q.H. and L.C.S. are supported by the Commonwealth Universal Research Enhancement Program, Pennsylvania Department of Health (PA DOH; P30 CA10815) and L.C.S. is supported by a PA DOH grant (SAP 4100020718). G.C. and L.Z. are supported by NCI ovarian SPORE (P50-CA83638), Ovarian Cancer Research Fund and Mary Kay Ash Charitable Foundation.

Author information




K.G. and Q. H. designed the experiments. K.G and A.L. performed the experiments. P.A.G. performed statistical analysis. A.J.K. performed pathological analysis. D.K., G.C. and L.Z. provided experimental materials. K.G., A.L., L.C.S and Q.H. analysed data. K.G., L.C.S. and Q.H. prepared the manuscript.

Corresponding author

Correspondence to Qihong Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1747 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gumireddy, K., Li, A., Gimotty, P. et al. KLF17 is a negative regulator of epithelial–mesenchymal transition and metastasis in breast cancer. Nat Cell Biol 11, 1297–1304 (2009). https://doi.org/10.1038/ncb1974

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing