Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

C/EBPα and β couple interfollicular keratinocyte proliferation arrest to commitment and terminal differentiation

Abstract

The transcriptional regulators that couple interfollicular basal keratinocyte proliferation arrest to commitment and differentiation are yet to be identified. Here we report that the basic region leucine zipper transcription factors C/EBPα and C/EBPβ are co-expressed in basal keratinocytes, and are coordinately upregulated as keratinocytes exit the basal layer and undergo terminal differentiation. Mice lacking both C/EBPα and β in the epidermis showed increased proliferation of basal keratinocytes and impaired commitment to differentiation. This led to ectopic expression of keratin 14 (K14) and ΔNp63 in suprabasal cells, decreased expression of spinous and granular layer proteins, parakeratosis and defective epidermal water barrier function. Knock-in mutagenesis revealed that C/EBP-E2F interaction was required for control of interfollicular epidermis (IFE) keratinocyte proliferation, but not for induction of spinous and granular layer markers, whereas C/EBP DNA binding was required for ΔNp63 downregulation and K1/K10 induction. Finally, loss of C/EBPα/β induced stem cell gene expression signatures in the epidermis. C/EBPs, therefore, couple basal keratinocyte cell cycle exit to commitment to differentiation through E2F repression and DNA binding, respectively, and may act to restrict the epidermal stem cell compartment.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: C/EBPα–TAP and C/EBPβ–TAP knock-in reveals the expression pattern of C/EBPα and C/EBPβ transcription factors in newborn epidermis.
Figure 2: C/EBPα;C/EBPβ epidermis conditional knockout mice show in-to-out skin barrier dysfunction and die perinatally.
Figure 3: Differentiation defects in C/EBPα/C/EBPβ EDKO newborn pups.
Figure 4: EDKO epidermis is hyperproliferative.
Figure 5: Genetic analysis of C/EBPα functions required for keratinocyte differentiation.
Figure 6: Regulation of gene expression and proliferation by specific C/EBP functional domains.
Figure 7: C/EBPα/β restrict stem cell gene signatures.
Figure 8: C/EBPα and β induce NFATc1-mediated HF stem cell quiescence.

Accession codes

Accessions

ArrayExpress

References

  1. Fuchs, E. & Horsley, V. More than one way to skin. Genes Dev. 22, 976–985 (2008).

    CAS  Article  Google Scholar 

  2. Jones, P. H., Simons, B. D. & Watt, F. M. Sic transit gloria: farewell to the epidermal transit amplifying cell? Cell Stem Cell 1, 371–381 (2007).

    CAS  Article  Google Scholar 

  3. Blanpain, C. & Fuchs, E. Epidermal stem cells of the skin. Annu. Rev. Cell Dev. Biol. 22, 339–373 (2006).

    CAS  Article  Google Scholar 

  4. Candi, E., Schmidt, R. & Melino, G. The cornified envelope: a model of cell death in the skin. Nature Rev. Mol. Cell Biol. 6, 328–340 (2005).

    CAS  Article  Google Scholar 

  5. Ruiz, S. et al. Unique and overlapping functions of pRb and p107 in the control of proliferation and differentiation in epidermis. Development 131, 2737–2748 (2004).

    CAS  Article  Google Scholar 

  6. Thalmeier, K., Synovzik, H., Mertz, R., Winnacker, E. L. & Lipp, M. Nuclear factor E2F mediates basic transcription and trans-activation by E1a of the human MYC promoter. Genes Dev. 3, 527–536 (1989).

    CAS  Article  Google Scholar 

  7. Rounbehler, R. J., Schneider-Broussard, R., Conti, C. J. & Johnson, D. G. Myc lacks E2F1's ability to suppress skin carcinogenesis. Oncogene 20, 5341–5349 (2001).

    CAS  Article  Google Scholar 

  8. Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–718 (1999).

    CAS  Article  Google Scholar 

  9. Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708–713 (1999).

    CAS  Article  Google Scholar 

  10. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    CAS  Article  Google Scholar 

  11. Lee, H. & Kimelman, D. A dominant-negative form of p63 is required for epidermal proliferation in zebrafish. Dev. Cell 2, 607–616 (2002).

    CAS  Article  Google Scholar 

  12. Senoo, M., Pinto, F., Crum, C. P. & McKeon, F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 129, 523–536 (2007).

    CAS  Article  Google Scholar 

  13. Truong, A. B., Kretz, M., Ridky, T. W., Kimmel, R. & Khavari, P. A. p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev. 20, 3185–3197 (2006).

    CAS  Article  Google Scholar 

  14. Nguyen, B. C. et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 20, 1028–1042 (2006).

    CAS  Article  Google Scholar 

  15. Blanpain, C., Lowry, W. E., Pasolli, H. A. & Fuchs, E. Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev. 20, 3022–3035 (2006).

    CAS  Article  Google Scholar 

  16. Oh, H. S. & Smart, R. C. Expression of CCAAT/enhancer binding proteins (C/EBP) is associated with squamous differentiation in epidermis and isolated primary keratinocytes and is altered in skin neoplasms. J. Invest. Dermatol. 110, 939–945 (1998).

    CAS  Article  Google Scholar 

  17. Maytin, E. V. & Habener, J. F. Transcription factors C/EBPα, C/EBPβ, and CHOP (Gadd153) expressed during the differentiation program of keratinocytes in vitro and in vivo. J. Invest. Dermatol. 110, 238–246 (1998).

    CAS  Article  Google Scholar 

  18. Di-Poi, N., Desvergne, B., Michalik, L. & Wahli, W. Transcriptional repression of peroxisome proliferator-activated receptor β/δ in murine keratinocytes by CCAAT/enhancer-binding proteins. J. Biol. Chem. 280, 38700–38710 (2005).

    CAS  Article  Google Scholar 

  19. Nerlov, C. The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol. 17, 318–324 (2007).

    CAS  Article  Google Scholar 

  20. Zhu, S. et al. C/EBPβ modulates the early events of keratinocyte differentiation involving growth arrest and keratin 1 and keratin 10 expression. Mol. Cell. Biol. 19, 7181–7190 (1999).

    CAS  Article  Google Scholar 

  21. Loomis, K. D., Zhu, S., Yoon, K., Johnson, P. F. & Smart, R. C. Genetic ablation of CCAAT/enhancer binding protein alpha in epidermis reveals its role in suppression of epithelial tumorigenesis. Cancer Res. 67, 6768–6776 (2007).

    CAS  Article  Google Scholar 

  22. Lee, Y. H., Sauer, B., Johnson, P. F. & Gonzalez, F. J. Disruption of the c/ebp α gene in adult mouse liver. Mol. Cell Biol. 17, 6014–6022 (1997).

    CAS  Article  Google Scholar 

  23. Hafner, M. et al. Keratin 14 Cre transgenic mice authenticate keratin 14 as an oocyte-expressed protein. Genesis 38, 176–181 (2004).

    CAS  Article  Google Scholar 

  24. Laurikkala, J. et al. p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development 133, 1553–1563 (2006).

    CAS  Article  Google Scholar 

  25. Yi, R., Poy, M. N., Stoffel, M. & Fuchs, E. A skin microRNA promotes differentiation by repressing 'stemness'. Nature 452, 225–229 (2008).

    CAS  Article  Google Scholar 

  26. Oberst, A. et al. The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch. Proc. Natl Acad. Sci. USA 104, 11280–11285 (2007).

    CAS  Article  Google Scholar 

  27. Rossi, M. et al. The E3 ubiquitin ligase Itch controls the protein stability of p63. Proc. Natl Acad. Sci. USA 103, 12753–12758 (2006).

    CAS  Article  Google Scholar 

  28. Porse, B. T. et al. E2F repression by C/EBPα is required for adipogenesis and granulopoiesis in vivo. Cell 107, 247–258 (2001).

    CAS  Article  Google Scholar 

  29. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  Article  Google Scholar 

  30. Nowak, J. A., Polak, L., Pasolli, H. A. & Fuchs, E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3, 33–43 (2008).

    CAS  Article  Google Scholar 

  31. Vidal, V. P., Ortonne, N. & Schedl, A. SOX9 expression is a general marker of basal cell carcinoma and adnexal-related neoplasms. J. Cutan. Pathol. 35, 373–379 (2008).

    Article  Google Scholar 

  32. Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H. & Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132, 299–310 (2008).

    CAS  Article  Google Scholar 

  33. Bull, J. J. et al. Contrasting expression patterns of CCAAT/enhancer-binding protein transcription factors in the hair follicle and at different stages of the hair growth cycle. J. Invest. Dermatol. 118, 17–24 (2002).

    CAS  Article  Google Scholar 

  34. Maytin, E. V. et al. Keratin 10 gene expression during differentiation of mouse epidermis requires transcription factors C/EBP and AP-2. Dev. Biol. 216, 164–181 (1999).

    CAS  Article  Google Scholar 

  35. Crish, J. F., Gopalakrishnan, R., Bone, F., Gilliam, A. C. & Eckert, R. L. The distal and proximal regulatory regions of the involucrin gene promoter have distinct functions and are required for in vivo involucrin expression. J. Invest. Dermatol. 126, 305–314 (2006).

    CAS  Article  Google Scholar 

  36. Antonini, D. et al. An autoregulatory loop directs the tissue-specific expression of p63 through a long-range evolutionarily conserved enhancer. Mol. Cell. Biol. 26, 3308–3318 (2006).

    CAS  Article  Google Scholar 

  37. Schuster, M. B. & Porse, B. T. C/EBPα: a tumour suppressor in multiple tissues? Biochim. Biophys. Acta 1766, 88–103 (2006).

    CAS  PubMed  Google Scholar 

  38. Sebastian, T., Malik, R., Thomas, S., Sage, J. & Johnson, P. F. C/EBPβ cooperates with RB:E2F to implement Ras(V12)-induced cellular senescence. EMBO J. 24, 3301–3312 (2005).

    CAS  Article  Google Scholar 

  39. Wang, X., Pasolli, H. A., Williams, T. & Fuchs, E. AP-2 factors act in concert with Notch to orchestrate terminal differentiation in skin epidermis. J. Cell Biol. 183, 37–48 (2008).

    CAS  Article  Google Scholar 

  40. Zhu, S., Yoon, K., Sterneck, E., Johnson, P. F. & Smart, R. C. CCAAT/enhancer binding protein-beta is a mediator of keratinocyte survival and skin tumorigenesis involving oncogenic Ras signaling. Proc. Natl Acad. Sci. USA 99, 207–212 (2002).

    CAS  Article  Google Scholar 

  41. Wong, D. J. et al. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2, 333–344 (2008).

    CAS  Article  Google Scholar 

  42. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genet. 40, 499–507 (2008).

    CAS  Article  Google Scholar 

  43. Johansen, L. M. et al. c-Myc is a critical target for c/EBPα in granulopoiesis. Mol. Cell. Biol. 21, 3789–3806 (2001).

    CAS  Article  Google Scholar 

  44. Vidal, V. P. et al. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr. Biol. 15, 1340–1351 (2005).

    CAS  Article  Google Scholar 

  45. de Guzman Strong, C. et al. Lipid defect underlies selective skin barrier impairment of an epidermal-specific deletion of Gata-3. J. Cell Biol. 175, 661–670 (2006).

    CAS  Article  Google Scholar 

  46. Segre, J. A., Bauer, C. & Fuchs, E. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nature Genet. 22, 356–360 (1999).

    CAS  Article  Google Scholar 

  47. Elias, P. M. et al. Basis for abnormal desquamation and permeability barrier dysfunction in RXLI. J. Invest. Dermatol. 122, 314–319 (2004).

    CAS  Article  Google Scholar 

  48. Denecker, G. et al. Caspase-14 protects against epidermal UVB photodamage and water loss. Nature Cell Biol. 9, 666–674 (2007).

    CAS  Article  Google Scholar 

  49. Hardman, M. J., Sisi, P., Banbury, D. N. & Byrne, C. Patterned acquisition of skin barrier function during development. Development 125, 1541–1552 (1998).

    CAS  Google Scholar 

  50. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnol. 17, 1030–1032 (1999).

    CAS  Article  Google Scholar 

  51. Zhang, Y., Buchholz, F., Muyrers, J. P. & Stewart, A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nature Genet. 20, 123–128 (1998).

    CAS  Article  Google Scholar 

  52. Kirstetter, P., Anderson, K., Porse, B. T., Jacobsen, S. E. & Nerlov, C. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nature Immunol. 7, 1048–1056 (2006).

    CAS  Article  Google Scholar 

  53. Kirstetter, P. et al. Modeling of C/EBPα mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells. Cancer Cell 13, 299–310 (2008).

    CAS  Article  Google Scholar 

  54. Rhee, H., Polak, L. & Fuchs, E. Lhx2 maintains stem cell character in hair follicles. Science 312, 1946–1949 (2006).

    CAS  Article  Google Scholar 

  55. Venezia, T. A. et al. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol. 2, e301 (2004).

    Article  Google Scholar 

  56. Turatsinze, J. V., Thomas-Chollier, M., Defrance, M. & van Helden, J. Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules. Nature Protocols 3, 1578–1588 (2008).

    CAS  Article  Google Scholar 

  57. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    CAS  Article  Google Scholar 

  58. Timchenko, N. A. et al. CCAAT/enhancer binding protein alpha regulates p21 protein and hepatocyte proliferation in newborn mice. Mol. Cell. Biol. 17, 7353–7361 (1997).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission (EuroStemCell integrated project, EuroCSC STREP). R.L. was the recipient of a Marie Curie Fellowship; S.G. was supported by a fellowship from the Spanish Ministry of Research; O.B. was supported by an HFSP postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

R.L. J.P. and C.N. designed experiments; R.L. performed analysis; S.G. performed biochemical characterization of KK and C/EBP-TAP knock-ins, R.L., O.B. and O.E. generated mouse lines; S.M. performed bioinformatics analysis; A.B.M.-C. and E.K. provided technical assistance; R.L. and C.N. wrote the manuscript.

Corresponding author

Correspondence to Claus Nerlov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 958 kb)

Supplementary Information

Supplementary Table 1 (XLS 754 kb)

Supplementary Information

Supplementary Table 2 (XLS 33 kb)

Supplementary Information

Supplementary Table 3 (XLS 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lopez, R., Garcia-Silva, S., Moore, S. et al. C/EBPα and β couple interfollicular keratinocyte proliferation arrest to commitment and terminal differentiation. Nat Cell Biol 11, 1181–1190 (2009). https://doi.org/10.1038/ncb1960

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1960

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing