Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Organizer restriction through modulation of Bozozok stability by the E3 ubiquitin ligase Lnx-like

Abstract

The organizer anchors the primary embryonic axis, and balance between dorsal (organizer) and ventral domains is fundamental to body patterning. LNX (ligand of Numb protein-X) is a RING finger and four PDZ domain-containing E3 ubiquitin ligase1,2. LNX serves as a binding platform and may have a role in cell fate determination, but its in vivo functions are unknown1,2,3,4,5. Here we show that Lnx-l (Lnx-like) functions as a critical regulator of dorso-ventral axis formation in zebrafish. Depletion of Lnx-l using specific antisense morpholinos (MOs) caused strong embryonic dorsalization. We identified Bozozok (Boz, also known as Dharma or Nieuwkoid) as a binding partner and substrate of Lnx-l. Boz is a homeodomain-containing transcriptional repressor induced by canonical Wnt signalling that is critical for dorsal organizer formation6,7,8,9,10,11,12. Lnx-l induced K48-linked polyubiquitylation of Boz, leading to its proteasomal degradation in human 293T cells and in zebrafish embryos. Dorsalization induced by Boz overexpression was suppressed by raising the level of Lnx-l, but Lnx-l failed to counteract dorsalization caused by mutant Boz lacking a critical motif for Lnx-l binding. Furthermore, dorsalization induced by depletion of Lnx-l was alleviated by attenuation of Boz expression. We conclude that Lnx-l modulates Boz activity to prevent the invasion of ventral regions of the embryo by organizer tissue. These studies introduce a ubiquitin ligase, Lnx-l, as a balancing modulator of axial patterning in the zebrafish embryo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depletion of Lnx-l causes dorsalization.
Figure 2: Lnx-l binds and ubiquitylates Boz but not Gsc.
Figure 3: Lnx-l-mediated polyubiquitylation destabilizes Boz.
Figure 4: Lnx-l counteracts Boz-mediated dorsalization.
Figure 5: Boz depletion mitigates dorsalization in lnx-l morphants.

Similar content being viewed by others

References

  1. Dho, S. E. et al. The mammalian numb phosphotyrosine-binding domain. Characterization of binding specificity and identification of a novel PDZ domain-containing numb binding protein, LNX. J. Biol. Chem. 273, 9179–9187 (1998).

    Article  CAS  Google Scholar 

  2. Nie, J. et al. LNX functions as a RING type E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation. EMBO J. 21, 93–102 (2002).

    Article  CAS  Google Scholar 

  3. Sollerbrant, K. et al. The Coxsackievirus and adenovirus receptor (CAR) forms a complex with the PDZ domain-containing protein ligand-of-numb protein-X (LNX). J. Biol. Chem. 278, 7439–7444 (2003).

    Article  CAS  Google Scholar 

  4. Kansaku, A. et al. Ligand-of-Numb protein X is an endocytic scaffold for junctional adhesion molecule 4. Oncogene 25, 5071–5084 (2006).

    Article  CAS  Google Scholar 

  5. Rice, D. S., Northcutt, G. M. & Kurschner, C. The Lnx family proteins function as molecular scaffolds for Numb family proteins. Mol. Cell Neurosci. 18, 525–540 (2001).

    Article  CAS  Google Scholar 

  6. Koos, D. S. & Ho, R. K. The nieuwkoid gene characterizes and mediates a Nieuwkoop-center-like activity in the zebrafish. Curr. Biol. 8, 1199–1206 (1998).

    Article  CAS  Google Scholar 

  7. Yamanaka, Y. et al. A novel homeobox gene, dharma, can induce the organizer in a non-cell-autonomous manner. Genes Dev. 12, 2345–2353 (1998).

    Article  CAS  Google Scholar 

  8. Fekany, K. et al. The zebrafish bozozok locus encodes Dharma, a homeodomain protein essential for induction of gastrula organizer and dorsoanterior embryonic structures. Development 126, 1427–1438 (1999).

    CAS  PubMed  Google Scholar 

  9. Shimizu, T. et al. Cooperative roles of Bozozok/Dharma and Nodal-related proteins in the formation of the dorsal organizer in zebrafish. Mech. Dev. 91, 293–303 (2000).

    Article  CAS  Google Scholar 

  10. Solnica-Krezel, L. & Driever, W. The role of the homeodomain protein Bozozok in zebrafish axis formation. Int. J. Dev. Biol. 45, 299–310 (2001).

    CAS  PubMed  Google Scholar 

  11. Ryu, S. L. et al. Regulation of dharma/bozozok by the Wnt pathway. Dev. Biol. 231, 397–409 (2001).

    Article  CAS  Google Scholar 

  12. Leung, T., Söll, I., Arnold, S. J., Kemler, R. & Driever, W. Direct binding of Lef1 to sites in the boz promoter may mediate pre-midblastula-transition activation of boz expression. Dev. Dyn. 228, 424–432 (2003).

    Article  CAS  Google Scholar 

  13. Larabell, C. A. et al. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in β-catenin that are modulated by the Wnt signaling pathway. J. Cell Biol. 136, 1123–1136 (1997).

    Article  CAS  Google Scholar 

  14. Miller, J. R. et al. Establishment of the Dorsal–Ventral Axis in Xenopus Embryos Coincides with the Dorsal Enrichment of Dishevelled That Is Dependent on Cortical Rotation. J. Cell Biol. 146, 427–437 (1999).

    Article  CAS  Google Scholar 

  15. Liu, J. et al. Siah-1 mediates a novel β-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol. Cell 7, 927–936 (2001).

    Article  CAS  Google Scholar 

  16. Zhu, Z. & Kirschner, M. Regulated proteolysis of Xom mediates dorsoventral pattern formation during early Xenopus development. Dev. Cell 3, 557–568 (2002).

    Article  CAS  Google Scholar 

  17. Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. & Thomsen, G. H. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687–693 (1999).

    Article  CAS  Google Scholar 

  18. Podos, S. D., Hanson, K. K., Wang, Y. C. & Ferguson, E. L. The DSmurf ubiquitin-protein ligase restricts BMP signaling spatially and temporally during Drosophila embryogenesis. Dev. Cell 1, 567–578 (2001).

    Article  CAS  Google Scholar 

  19. Weiss, A., Baumgartner, M., Radziwill, G., Dennler, J. & Moelling, K. c-Src is a PDZ interaction partner and substrate of the E3 ubiquitin ligase Ligand-of-Numb protein X1. FEBS Lett. 581, 5131–5136 (2007).

    Article  CAS  Google Scholar 

  20. Leung, T. et al. bozozok directly represses bmp2b transcription and mediates the earliest dorsoventral asymmetry of bmp2b expression in zebrafish. Development 130, 3639–3649 (2003).

    Article  CAS  Google Scholar 

  21. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  Google Scholar 

  22. Muratani, M. & Tansey, W. P. How the ubiquitin-proteasome system controls transcription. Nature Rev. Mol. Cell Biol. 4, 192–201 (2003).

    Article  CAS  Google Scholar 

  23. Pickart, C. M. & Fushman, D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610–616 (2004).

    Article  CAS  Google Scholar 

  24. Fekany-Lee, K., Gonzalez, E., Miller-Bertoglio, V. & Solnica-Krezel, L. The homeobox gene bozozok promotes anterior neuroectoderm formation in zebrafish through negative regulation of BMP2/4 and Wnt pathways. Development 127, 2333–2345 (2000).

    CAS  PubMed  Google Scholar 

  25. Melby, A. E., Beach, C., Mullins, M. & Kimelman, D. Patterning the early zebrafish by the opposing actions of bozozok and vox/vent. Dev. Biol. 224, 275–285 (2000).

    Article  CAS  Google Scholar 

  26. Kawahara, A., Wilm, T., Solnica-Krezel, L. & Dawid, I. B. Antagonistic role of vega1 and bozozok/dharma homeobox genes in organizer formation. Proc. Natl. Acad. Sci. USA 97, 12121–12126 (2000).

    Article  CAS  Google Scholar 

  27. Kawahara, A., Wilm, T., Solnica-Krezel, L. & Dawid, I. B. Functional interaction of vega2 and goosecoid homeobox genes in zebrafish. Genesis 28, 58–67 (2000).

    Article  CAS  Google Scholar 

  28. Gonzalez, E. M. et al. Head and trunk in zebrafish arise via coinhibition of BMP signaling by bozozok and chordino. Genes Dev. 14, 3087–3092 (2000).

    Article  CAS  Google Scholar 

  29. Shimizu, T., Yamanaka, Y., Nojima, H., Yabe, T., Hibi, M. & Hirano, T. A novel repressor-type homeobox gene, ved, is involved in dharma/bozozok-mediated dorsal organizer formation in zebrafish. Mech. Dev. 118, 125–138 (2002).

    Article  CAS  Google Scholar 

  30. Sirotkin, H. I., Dougan, S. T., Schier, A. F. & Talbot, W. S. bozozok and squint act in parallel to specify dorsal mesoderm and anterior neuroectoderm in zebrafish. Development 127, 2583–2592 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Rath and J. Gonzales for help with fish maintenance, and S.-Y. Choi for helpful comments. This work was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

H.R. designed, carried out and interpreted experiments and wrote the paper. I.B.D. designed and interpreted experiments and wrote the paper.

Corresponding author

Correspondence to Igor B. Dawid.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ro, H., Dawid, I. Organizer restriction through modulation of Bozozok stability by the E3 ubiquitin ligase Lnx-like. Nat Cell Biol 11, 1121–1127 (2009). https://doi.org/10.1038/ncb1926

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1926

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing