Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A Dam1-based artificial kinetochore is sufficient to promote chromosome segregation in budding yeast


Kinetochores are large multiprotein complexes that mediate chromosome segregation in all eukaryotes by dynamically connecting specialized chromosome regions, termed centromeres, to the plus-ends of spindle microtubules1,2. Even the relatively simple kinetochores of the budding yeast Saccharomyces cerevisiae consist of more than 80 proteins, making analysis of their respective roles a daunting task3. Here, we have developed a system that allows us to artificially recruit proteins to DNA sequences and determine whether they can provide any aspect of kinetochore function in vivo. We show that artificial recruitment of the microtubule-binding Dam1 complex to a plasmid lacking any centromere DNA is sufficient to confer mitotic stabilization. The Dam1-based artificial kinetochores are able to attach, bi-orient and segregate mini-chromosomes on the mitotic spindle, and they bypass the requirement for essential DNA-binding components of natural kinetochores. Thus, we have built a simplified chromosome segregation system by directly recruiting a microtubule force-transducing component to DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A strategy to construct artificial kinetochores in S. cerevisiae.
Figure 2: Live-cell imaging of mini-chromosome segregation mediated by Ask1–and Dam1–TetR.
Figure 3: Analysis of artificial kinetochore function.
Figure 4: The artificial kinetochore can direct the segregation of a native yeast chromosome.

Similar content being viewed by others


  1. Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore-microtubule interface. Nature Rev. Mol. Cell Biol. 9, 33–46 (2008).

    Article  CAS  Google Scholar 

  2. Tanaka, T. U. & Desai, A. Kinetochore-microtubule interactions: the means to the end. Curr. Opin. Cell Biol. 20, 53–63 (2008).

    Article  CAS  Google Scholar 

  3. Westermann, S., Drubin, D. G. & Barnes, G. Structures and functions of yeast kinetochore complexes. Annu. Rev. Biochem. 76, 563–591 (2007).

    Article  CAS  Google Scholar 

  4. Meluh, P. B., Yang, P., Glowczewski, L., Koshland, D. & Smith, M. M. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94, 607–613 (1998).

    Article  CAS  Google Scholar 

  5. Furuyama, S. & Biggins, S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc. Natl Acad. Sci. USA 104, 14706–14711 (2007).

    Article  CAS  Google Scholar 

  6. Clarke, L. & Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504–509 (1980).

    Article  CAS  Google Scholar 

  7. Megee, P. C. & Koshland, D. A functional assay for centromere-associated sister chromatid cohesion. Science 285, 254–257 (1999).

    Article  CAS  Google Scholar 

  8. Dewar, H., Tanaka, K., Nasmyth, K. & Tanaka, T. U. Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle. Nature 428, 93–97 (2004).

    Article  CAS  Google Scholar 

  9. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    Article  CAS  Google Scholar 

  10. Ciferri, C. et al. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133, 427–439 (2008).

    Article  CAS  Google Scholar 

  11. Cheeseman, I. M. et al. Implication of a novel multiprotein Dam1p complex in outer kinetochore function. J. Cell Biol. 155, 1137–1145 (2001).

    Article  CAS  Google Scholar 

  12. Cheeseman, I. M. et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163–172 (2002).

    Article  CAS  Google Scholar 

  13. Tanaka, K., Kitamura, E., Kitamura, Y. & Tanaka, T. U. Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles. J. Cell Biol. 178, 269–281 (2007).

    Article  CAS  Google Scholar 

  14. Miranda, J. J., De Wulf, P., Sorger, P. K. & Harrison, S. C. The yeast DASH complex forms closed rings on microtubules. Nature Struct. Mol. Biol. 12, 138–143 (2005).

    Article  CAS  Google Scholar 

  15. Westermann, S. et al. Formation of a dynamic kinetochore-microtubule interface through assembly of the Dam1 ring complex. Mol. Cell 17, 277–290 (2005).

    Article  CAS  Google Scholar 

  16. Wang, H. W. et al. Architecture of the Dam1 kinetochore ring complex and implications for microtubule-driven assembly and force-coupling mechanisms. Nature Struct. Mol. Biol. 14, 721–726 (2007).

    Article  Google Scholar 

  17. Westermann, S. et al. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440, 565–569 (2006).

    Article  CAS  Google Scholar 

  18. Asbury, C. L., Gestaut, D. R., Powers, A. F., Franck, A. D. & Davis, T. N. The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc. Natl Acad. Sci. USA 103, 9873–9878 (2006).

    Article  CAS  Google Scholar 

  19. Grishchuk, E. L. et al. The Dam1 ring binds microtubules strongly enough to be a processive as well as energy-efficient coupler for chromosome motion. Proc. Natl Acad. Sci. USA 105, 15423–15428 (2008).

    Article  CAS  Google Scholar 

  20. Cheeseman, I. M., Enquist-Newman, M., Muller-Reichert, T., Drubin, D. G. & Barnes, G. Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex. J. Cell Biol. 152, 197–212 (2001).

    Article  CAS  Google Scholar 

  21. He, X., Rines, D. R., Espelin, C. W. & Sorger, P. K. Molecular analysis of kinetochore-microtubule attachment in budding yeast. Cell 106, 195–206 (2001).

    Article  CAS  Google Scholar 

  22. Shcheprova, Z., Baldi, S., Frei, S. B., Gonnet, G. & Barral, Y. A mechanism for asymmetric segregation of age during yeast budding. Nature 454, 728–734 (2008).

    Article  CAS  Google Scholar 

  23. Sandall, S. et al. A Bir1-Sli15 complex connects centromeres to microtubules and is required to sense kinetochore tension. Cell 127, 1179–1191 (2006).

    Article  CAS  Google Scholar 

  24. Garner, E. C., Campbell, C. S. & Mullins, R. D. Dynamic instability in a DNA-segregating prokaryotic actin homolog. Science 306, 1021–1025 (2004).

    Article  CAS  Google Scholar 

  25. Ivanov, D. & Nasmyth, K. A topological interaction between cohesin rings and a circular minichromosome. Cell 122, 849–860 (2005).

    Article  CAS  Google Scholar 

  26. Gari, E., Piedrafita, L., Aldea, M. & Herrero, E. A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 13, 837–848 (1997).

    Article  CAS  Google Scholar 

  27. Straight, A. F., Belmont, A. S., Robinett, C. C. & Murray, A. W. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6, 1599–1608 (1996).

    Article  CAS  Google Scholar 

  28. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

Download references


The authors wish to thank all members of the Westermann lab for discussions, and Jan-Michael Peters and Barry Dickson for critical reading of the manuscript. We thank Soni Lacefield and Andrew Murray for communicating results before publication, and the Nasmyth and Drubin/Barnes labs for strains and plasmids. Research in the laboratory of S.W. was supported by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC starting grant agreement no. [203499], and by the Austrian Science Fund FWF (SFB F34-B03).

Author information

Authors and Affiliations



S.W. and E.K. designed the experiments and wrote the manuscript. E.K. performed most of the experiments with help from So. W., Y.P. and S.W; K.M. contributed the mass spectrometry analysis.

Corresponding author

Correspondence to Stefan Westermann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 409 kb)

Supplementary Information

Supplementary Movie 1 (AVI 778 kb)

Supplementary Information

Supplementary Movie 2 (AVI 2859 kb)

Supplementary Information

Supplementary Movie 3 (AVI 1500 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiermaier, E., Woehrer, S., Peng, Y. et al. A Dam1-based artificial kinetochore is sufficient to promote chromosome segregation in budding yeast. Nat Cell Biol 11, 1109–1115 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing