Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An essential role of the aPKC–Aurora A–NDEL1 pathway in neurite elongation by modulation of microtubule dynamics

Abstract

Orchestrated remodelling of the cytoskeketon is prominent during neurite extension. In contrast with the extensive characterization of actin filament regulation, little is known about the dynamics of microtubules during neurite extension. Here we identify an atypical protein kinase C (aPKC)–Aurora A–NDEL1 pathway that is crucial for the regulation of microtubule organization during neurite extension. aPKC phosphorylates Aurora A at Thr 287 (T287), which augments interaction with TPX2 and facilitates activation of Aurora A at the neurite hillock, followed by phosphorylation of NDEL1 at S251 and recruitment. Suppression of aPKC, Aurora A or TPX2, or disruption of Ndel1, results in severe impairment of neurite extension. Analysis of microtubule dynamics with a microtubule plus-end marker revealed that suppression of the aPKC–Aurora A–NDEL1 pathway resulted in a significant decrease in the frequency of microtubule emanation from the microtubule organizing centre (MTOC), suggesting that Aurora A acts downstream of aPKC. These findings demonstrate a surprising role of aPKC–Aurora A–NDEL1 pathway in microtubule remodelling during neurite extension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aurora A is expressed and phosphorylated in DRG neurons.
Figure 2: PKC-ζ is colocalized with activated Aurora A and phosphorylates Aurora A.
Figure 3: Characterization of phosphorylation of Aurora A on T287 by PKC-ζ using a specific monoclonal antibody against phosphorylated Thr 287.
Figure 4: Phosphorylation of Aurora A on T287 augments interaction with TPX2 and facilitates activation of Aurora A.
Figure 5: Determination of the order of action of aPKC, Aurora A, TPX2 and NDEL1.
Figure 6: An essential role of the PKC-ζ–Aurora A–NDEL1 pathway on neurite elongation.
Figure 7: The PKC-ζ–Aurora A–NDEL1 pathway regulates microtubule projection from the MTOC.
Figure 8: Expression of phosphorylation mimetic Aurora A mutants and neurite extension under suppression of aPKC, depletion of Aurora A, depletion of TPX2 and disruption of Ndel1.

Similar content being viewed by others

References

  1. Bentley, D. & O'Connor, T. P. Cytoskeletal events in growth cone steering. Curr. Opin. Neurobiol. 4, 43–48 (1994).

    Article  CAS  Google Scholar 

  2. Tanaka, E. & Sabry, J. Making the connection: cytoskeletal rearrangements during growth cone guidance. Cell 83, 171–176 (1995).

    Article  CAS  Google Scholar 

  3. Gallo, G. & Letourneau, P. C. Regulation of growth cone actin filaments by guidance cues. J. Neurobiol. 58, 92–102 (2004).

    Article  CAS  Google Scholar 

  4. Dent, E. W. et al. Filopodia are required for cortical neurite initiation. Nature Cell Biol. 9, 1347–1359 (2007).

    Article  CAS  Google Scholar 

  5. Kwiatkowski, A. V. et al. Ena/VASP is required for neuritogenesis in the developing cortex. Neuron 56, 441–455 (2007).

    Article  CAS  Google Scholar 

  6. Lewis, A. K. & Bridgman, P. C. Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity. J. Cell Biol. 119, 1219–1243 (1992).

    Article  CAS  Google Scholar 

  7. Svitkina, T. M. et al. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409–421 (2003).

    Article  CAS  Google Scholar 

  8. Mallavarapu, A. & Mitchison, T. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. Cell Biol. 146, 1097–1106 (1999).

    Article  CAS  Google Scholar 

  9. Ridley, A. J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 16, 522–529 (2006).

    Article  CAS  Google Scholar 

  10. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  11. Dent, E. W. & Gertler, F. B. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40, 209–227 (2003).

    Article  CAS  Google Scholar 

  12. Gundersen, G. G. Evolutionary conservation of microtubule-capture mechanisms. Nature Rev. Mol. Cell Biol. 3, 296–304 (2002).

    Article  CAS  Google Scholar 

  13. Fukata, M. et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873–885 (2002).

    Article  CAS  Google Scholar 

  14. Krylyshkina, O. et al. Nanometer targeting of microtubules to focal adhesions. J. Cell Biol. 161, 853–859 (2003).

    Article  CAS  Google Scholar 

  15. Fukata, Y. et al. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nature Cell Biol. 4, 583–591 (2002).

    Article  CAS  Google Scholar 

  16. Zakharenko, S. & Popov, S. Dynamics of axonal microtubules regulate the topology of new membrane insertion into the growing neurites. J. Cell Biol. 143, 1077–1086 (1998).

    Article  CAS  Google Scholar 

  17. Dobyns, W. B. The neurogenetics of lissencephaly. Neurol. Clin. 7, 89–105 (1989).

    Article  CAS  Google Scholar 

  18. Dobyns, W. B., Reiner, O., Carrozzo, R. & Ledbetter, D. H. Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. J. Am. Med. Assoc. 270, 2838–2842 (1993).

    Article  CAS  Google Scholar 

  19. Reiner, O. et al. Isolation of a Miller–Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364, 717–721 (1993).

    Article  CAS  Google Scholar 

  20. Wynshaw-Boris, A. Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development. Clin. Genet. 72, 296–304 (2007).

    Article  CAS  Google Scholar 

  21. Gupta, A., Tsai, L. H. & Wynshaw-Boris, A. Life is a journey: a genetic look at neocortical development. Nature Rev. Genet. 3, 342–355 (2002).

    Article  CAS  Google Scholar 

  22. Niethammer, M. et al. NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697–711 (2000).

    Article  CAS  Google Scholar 

  23. Sasaki, S. et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28, 681–696 (2000).

    Article  CAS  Google Scholar 

  24. Mori, D. et al. NDEL1 phosphorylation by Aurora-A kinase is essential for centrosomal maturation, separation, and TACC3 recruitment. Mol. Cell. Biol. 27, 352–367 (2007).

    Article  CAS  Google Scholar 

  25. Lindsay, R. M. Nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. J. Neurosci. 8, 2394–2405 (1988).

    Article  CAS  Google Scholar 

  26. Walter, A. O., Seghezzi, W., Korver, W., Sheung, J. & Lees, E. The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene 19, 4906–4916 (2000).

    Article  CAS  Google Scholar 

  27. Pasquale, E. B. Eph receptor signalling casts a wide net on cell behaviour. Nature Rev. Mol. Cell Biol. 6, 462–475 (2005).

    Article  CAS  Google Scholar 

  28. Murai, K. K. & Pasquale, E. B. New exchanges in eph-dependent growth cone dynamics. Neuron 46, 161–163 (2005).

    Article  CAS  Google Scholar 

  29. Nikolic, M. The molecular mystery of neuronal migration: FAK and Cdk5. Trends Cell Biol. 14, 1–5 (2004).

    Article  CAS  Google Scholar 

  30. Zhang, X. et al. Dishevelled promotes axon differentiation by regulating atypical protein kinase C. Nature Cell Biol. 9, 743–754 (2007).

    Article  CAS  Google Scholar 

  31. Chen, Y. M. et al. Microtubule affinity-regulating kinase 2 functions downstream of the PAR-3/PAR-6/atypical PKC complex in regulating hippocampal neuronal polarity. Proc. Natl Acad. Sci. USA 103, 8534–8539 (2006).

    Article  CAS  Google Scholar 

  32. Xie, Z. et al. Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells. J. Biol. Chem. 281, 6366–6375 (2006).

    Article  CAS  Google Scholar 

  33. Krystyniak, A., Garcia-Echeverria, C., Prigent, C. & Ferrari, S. Inhibition of Aurora A in response to DNA damage. Oncogene 25, 338–348 (2006).

    Article  CAS  Google Scholar 

  34. Kufer, T. A. et al. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J. Cell Biol. 158, 617–623 (2002).

    Article  CAS  Google Scholar 

  35. Bayliss, R., Sardon, T., Vernos, I. & Conti, E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell 12, 851–862 (2003).

    Article  CAS  Google Scholar 

  36. Ozlu, N. et al. An essential function of the C. elegans ortholog of TPX2 is to localize activated Aurora A kinase to mitotic spindles. Dev. Cell 9, 237–248 (2005).

    Article  Google Scholar 

  37. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, A novel Xenopus MAP involved in spindle pole organization. J. Cell Biol. 149, 1405–1418 (2000).

    Article  CAS  Google Scholar 

  38. Akimoto, K. et al. EGF or PDGF receptors activate atypical PKCλ through phosphatidylinositol 3-kinase. EMBO J. 15, 788–798 (1996).

    Article  CAS  Google Scholar 

  39. Kotani, K. et al. Requirement of atypical protein kinase Cλ for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes. Mol. Cell. Biol. 18, 6971–6982 (1998).

    Article  CAS  Google Scholar 

  40. Wirtz-Peitz, F., Nishimura, T. & Knoblich, J. A. Linking cell cycle to asymmetric division: Aurora-A phosphorylates the Par complex to regulate Numb localization. Cell 135, 161–173 (2008).

    Article  CAS  Google Scholar 

  41. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865–868 (2000).

    Article  CAS  Google Scholar 

  42. de Anda, F. C. et al. Centrosome localization determines neuronal polarity. Nature 436, 704–708 (2005).

    Article  Google Scholar 

  43. Yamada, M. et al. LIS1 and NDEL1 coordinate the plus-end-directed transport of cytoplasmic dynein. EMBO J. 27, 2471–2483 (2008).

    Article  CAS  Google Scholar 

  44. Jan, Y. N. & Jan, L. Y. Asymmetric cell division in the Drosophila nervous system. Nature Rev. Neurosci. 2, 772–779 (2001).

    Article  CAS  Google Scholar 

  45. Ohno, S. Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr. Opin. Cell Biol. 13, 641–648 (2001).

    Article  CAS  Google Scholar 

  46. Shi, S. H., Jan, L. Y. & Jan, Y. N. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112, 63–75 (2003).

    Article  CAS  Google Scholar 

  47. Lee, C. Y. et al. Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev. 20, 3464–3474 (2006).

    Article  CAS  Google Scholar 

  48. Wang, H. et al. Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev. 20, 3453–3463 (2006).

    Article  CAS  Google Scholar 

  49. Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. & Golemis, E. A. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351–1363 (2007).

    Article  CAS  Google Scholar 

  50. Kim, A. H. et al. A centrosomal Cdc20-APC pathway controls dendrite morphogenesis in postmitotic neurons. Cell 136, 322–336 (2009).

    Article  CAS  Google Scholar 

  51. Brewer, G. J., Torricelli, J. R., Evege, E. K. & Price, P. J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Yukimi Kira, Yoriko Yabunaka, Gaku Kuwabara, Toshiyuki Kawashima and Takako Takitho for technical support, and Hiromichi Nishimura and Keiko Fujimoto for mouse breeding. This work was also supported by the Osaka Community Foundation to D.M. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan to S.H. This work was also supported by the Cell Science Research Foundation, the Japan Spina Bifida and Hydrocephalus Research Foundation, the Takeda Science Foundation and the Hoh-ansha Foundation to S.H, and National Institutes of Health grants NS41030 and HD47380 to A.W.-B.

Author information

Authors and Affiliations

Authors

Contributions

D.M., M.Y., Y.S. and A.S. performed the experimental work, Y.M.-K., S.O. and H.S. conducted data analysis, and A.W.-B. and S.H. performed project planning and wrote the manuscript.

Corresponding author

Correspondence to Shinji Hirotsune.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1345 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1037 kb)

Supplementary Information

Supplementary Movie 2 (MOV 1091 kb)

Supplementary Information

Supplementary Movie 3 (MOV 1022 kb)

Supplementary Information

Supplementary Movie 4 (MOV 1078 kb)

Supplementary Information

Supplementary Movie 5 (MOV 616 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, D., Yamada, M., Mimori-Kiyosue, Y. et al. An essential role of the aPKC–Aurora A–NDEL1 pathway in neurite elongation by modulation of microtubule dynamics. Nat Cell Biol 11, 1057–1068 (2009). https://doi.org/10.1038/ncb1919

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1919

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing