Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reversible acetylation of the chromatin remodelling complex NoRC is required for non-coding RNA-dependent silencing

Abstract

The SNF2h (sucrose non-fermenting protein 2 homologue)-containing chromatin-remodelling complex NoRC silences a fraction of ribosomal RNA genes (rDNA) by establishing a heterochromatic structure at the rDNA promoter1,2,3. Here we show that the acetyltransferase MOF (males absent on the first) acetylates TIP5, the largest subunit of NoRC, at a single lysine residue, K633, adjacent to the TIP5 RNA-binding domain, and that the NAD+-dependent deacetylase SIRT1 (sirtuin-1) removes the acetyl group from K633. Acetylation regulates the interaction of NoRC with promoter-associated RNA (pRNA), which in turn affects heterochromatin formation, nucleosome positioning and rDNA silencing. Significantly, NoRC acetylation is responsive to the intracellular energy status and fluctuates during S phase. Activation of SIRT1 on glucose deprivation leads to deacetylation of K633, enhanced pRNA binding and an increase in heterochromatic histone marks. These results suggest a mechanism that links the epigenetic state of rDNA to cell metabolism and reveal another layer of epigenetic control that involves post-translational modification of a chromatin remodelling complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MOF acetylates TIP5 in vitro and in vivo.
Figure 2: TIP5 acetylation is required for NoRC-mediated rDNA silencing.
Figure 3: Acetylation decreases pRNA binding to TIP5.
Figure 4: Deacetylation by SIRT1 is required for NoRC function.
Figure 5: Acetylation of TIP5 precedes replication of silent rRNA genes.

Similar content being viewed by others

References

  1. Strohner, R. et al. NoRC - a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J. 20, 4892–4900 (2001).

    Article  CAS  Google Scholar 

  2. Zhou, Y., Santoro, R. & Grummt, I. The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J. 21, 4632–4640 (2002).

    Article  CAS  Google Scholar 

  3. Santoro, R., Li, J. & Grummt, I. The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nature Genet. 32, 393–396 (2002).

    Article  CAS  Google Scholar 

  4. Corona, D. F., Clapier, C. R., Becker, P. B. & Tamkun, J. W. Modulation of ISWI function by site-specific histone acetylation. EMBO Rep. 3, 242–247 (2002).

    Article  CAS  Google Scholar 

  5. Kurdistani, S. K., Tavazoie, S. & Grunstein, M. Mapping global histone acetylation patterns to gene expression. Cell 117, 721–733 (2004).

    Article  CAS  Google Scholar 

  6. Smith, E. R. et al. The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol. Cell. Biol. 20, 312–318 (2000).

    Article  CAS  Google Scholar 

  7. Akhtar, A. & Becker, P. B. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol. Cell 5, 367–375 (2000).

    Article  CAS  Google Scholar 

  8. Lee, K. K. & Workman, J. L. Histone acetyltransferase complexes: one size doesn't fit all. Nature Rev. Mol. Cell Biol. 8, 284–295 (2007).

    Article  CAS  Google Scholar 

  9. Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873–885 (2005).

    Article  CAS  Google Scholar 

  10. Hilfiker, A., Hilfiker-Kleiner, D., Pannuti, A. & Lucchesi, J. C. MOF, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J. 16, 2054–2060 (1997).

    Article  CAS  Google Scholar 

  11. Buscaino, A. et al. MOF-regulated acetylation of MSL-3 in the Drosophila dosage compensation complex. Mol. Cell 11, 1265–1277 (2003). .

    Article  CAS  Google Scholar 

  12. Zhou, Y. & Grummt, I. The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr. Biol. 15, 1434–1438 (2005).

    Article  CAS  Google Scholar 

  13. Li, J., Längst, G. & Grummt, I. NoRC-dependent nucleosome positioning silences rRNA genes. EMBO J. 25, 5735–5741 (2006).

    Article  CAS  Google Scholar 

  14. Taipale, M. et al. MOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol. Cell. Biol. 25, 6798–6810 (2005).

    Article  CAS  Google Scholar 

  15. Gupta, A. et al. Involvement of human MOF in ATM function. Mol. Cell. Biol. 25, 5292–5305 (2005).

    Article  CAS  Google Scholar 

  16. Smith, E. R. et al. A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol. Cell. Biol. 25, 9175–9188 (2005).

    Article  CAS  Google Scholar 

  17. Mendjan, S. et al. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol. Cell 21, 811–823 (2006).

    Article  CAS  Google Scholar 

  18. Mayer, C., Schmitz, K. M., Li, J., Grummt, I. & Santoro, R. Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol. Cell 22, 351–361 (2006).

    Article  CAS  Google Scholar 

  19. Mayer, C., Neubert, M. & Grummt, I. The structure of NoRC-associated RNA is critical for targeting the chromatin remodeling complex NoRC to the nucleolus. EMBO Rep. 9, 774–778 (2008).

    Article  CAS  Google Scholar 

  20. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  Google Scholar 

  21. Fulco, M. et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell 14, 661–673 (2008).

    Article  CAS  Google Scholar 

  22. Li, J., Santoro, R., Koberna, K. & Grummt, I. The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J. 24, 120–127 (2004).

    Article  Google Scholar 

  23. Santoro, R. & Grummt, I. Molecular mechanisms mediating methylation-dependent silencing of ribosomal gene transcription. Mol. Cell 8, 719–725 (2001).

    Article  CAS  Google Scholar 

  24. Murayama, A. et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133, 627–639 (2008).

    Article  CAS  Google Scholar 

  25. Grummt, I. & Ladurner, A. G. A metabolic throttle regulates the epigenetic state of rDNA. Cell 133, 577–580 (2008).

    Article  CAS  Google Scholar 

  26. Frye, R. A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260, 273–279 (1999).

    Article  CAS  Google Scholar 

  27. Ramirez-Carrozzi, V. R. et al. Selective and antagonistic functions of SWI/SNF and Mi-2β nucleosome remodeling complexes during an inflammatory response. Genes Dev. 20, 282–296 (2006).

    Article  CAS  Google Scholar 

  28. Schmitz, K. M. et al. TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol Cell 33, 344–353 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Smale for providing the vector pQXCIP, L. Guarente for expression vectors encoding SIRT1H355Y, G. Xouri and M. Gentzel for their contribution at the early stages of this work and M. Wilm for his support in the mass spectroscopic analysis. This study was funded by the Deutsche Forschungsgemeinschaft (SFB/Transregio 5, SP 'Epigenetics'), the EU-Network 'Epigenome' and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Contributions

Y.G., K.S., C.M. and I.G. conceived the experiments and wrote the manuscript. Y.G., K.S., C.M. and X.Y. performed and analysed the experiments and generated the figures. A.A. contributed the reagents and materials.

Corresponding author

Correspondence to Ingrid Grummt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 862 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Schmitz, KM., Mayer, C. et al. Reversible acetylation of the chromatin remodelling complex NoRC is required for non-coding RNA-dependent silencing. Nat Cell Biol 11, 1010–1016 (2009). https://doi.org/10.1038/ncb1914

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing