Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A two-step model for senescence triggered by a single critically short telomere

An Erratum to this article was published on 01 May 2010

This article has been updated

Abstract

Telomeres protect chromosome ends from fusion and degradation1. In the absence of a specific telomere elongation mechanism, their DNA shortens progressively with every round of replication, leading to replicative senescence2. Here, we show that telomerase-deficient cells bearing a single, very short telomere senesce earlier, demonstrating that the length of the shortest telomere is a major determinant of the onset of senescence. We further show that Mec1p–ATR specifically recognizes the single, very short telomere causing the accelerated senescence. Strikingly, before entering senescence, cells divide for several generations despite complete erosion of their shortened telomeres. This pre-senescence growth requires RAD52 (radiation sensitive) and MMS1 (methyl methane sulfonate sensitive), and there is no evidence for major inter-telomeric recombination. We propose that, in the absence of telomerase, a very short telomere is first maintained in a pre-signalling state by a RAD52–MMS1-dependent pathway and then switches to a signalling state leading to senescence through a Mec1p-dependent checkpoint.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental system.
Figure 2: Senescence is advanced in the presence of a critically short telomere.
Figure 3: RAD52- and MMS1-dependent growth of pre-senescent cells can be uncoupled from inter-telomeric recombination.
Figure 4: Tel1p promotes senescence and Mec1p tranduces a signal from the very short telomere.
Figure 5: A two-step model for senescence triggered by a single, critically short telomere.

Similar content being viewed by others

Change history

  • 24 March 2010

    In the version of this letter initially published online, the labels '0 block' and '2 block' in Fig. 2a were swapped. This error has been corrected in both the HTML and PDF versions of the article.

References

  1. Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Ann. Rev. Gen. 42, 301–334 (2008).

    Article  CAS  Google Scholar 

  2. Gilson, E. & Geli, V. How telomeres are replicated. Nature Rev. Mol. Cell Biol. 8, 825–838 (2007).

    Article  CAS  Google Scholar 

  3. Hemann, M. T., Strong, M. A., Hao, L. Y. & Greider, C. W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77 (2001).

    Article  CAS  Google Scholar 

  4. Marcand, S., Brevet, V. & Gilson, E. Progressive cis-inhibition of telomerase upon telomere elongation. Embo J. 18, 3509–3519 (1999).

    Article  CAS  Google Scholar 

  5. Sabourin, M., Tuzon, C. T. & Zakian, V. A. Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae. Mol. Cell 27, 550–561 (2007).

    Article  CAS  Google Scholar 

  6. Decourty, L. et al. Linking functionally related genes by sensitive and quantitative characterization of genetic interaction profiles. Proc. Natl Acad. Sci. USA 105, 5821–5826 (2008).

    Article  CAS  Google Scholar 

  7. Lundblad, V. & Blackburn, E. H. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73, 347–360 (1993).

    Article  CAS  Google Scholar 

  8. Enomoto, S., Glowczewski, L. & Berman, J. MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae. Mol. Biol. Cell. 13, 2626–2638 (2002).

    Article  CAS  Google Scholar 

  9. Forstemann, K., Hoss, M. & Lingner, J. Telomerase-dependent repeat divergence at the 3′ ends of yeast telomeres. Nucleic Acids Res. 28, 2690–2694 (2000).

    Article  CAS  Google Scholar 

  10. Louis, E. J. The chromosome ends of Saccharomyces cerevisiae. Yeast 11, 1553–1573 (1995).

    Article  CAS  Google Scholar 

  11. Sandell, L. L. & Zakian, V. A. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75, 729–739 (1993).

    Article  CAS  Google Scholar 

  12. Leroy, C. et al. PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol. Cell 11, 827–835 (2003).

    Article  CAS  Google Scholar 

  13. Teixeira, M. T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117, 323–335 (2004).

    Article  CAS  Google Scholar 

  14. Teng, S. C. & Zakian, V. A. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 8083–8093 (1999).

    Article  CAS  Google Scholar 

  15. Krogh, B. O. & Symington, L. S. Recombination proteins in yeast. Ann. Rev. Gen. 38, 233–271 (2004).

    Article  CAS  Google Scholar 

  16. Duro, E., Vaisica, J. A., Brown, G. W. & Rouse, J. Budding yeast Mms22 and Mms1 regulate homologous recombination induced by replisome blockage. DNA Repair (Amst) 7, 811–818 (2008).

    Article  CAS  Google Scholar 

  17. Hryciw, T., Tang, M., Fontanie, T. & Xiao, W. MMS1 protects against replication-dependent DNA damage in Saccharomyces cerevisiae. Mol. Genet. Genomics 266, 848–857 (2002).

    Article  CAS  Google Scholar 

  18. Ui, A. et al. Activation of a novel pathway involving Mms1 and Rad59 in sgs1 cells. Biochem. Biophys. Res. Commun. 356, 1031–1037 (2007).

    Article  CAS  Google Scholar 

  19. Zaidi, I. W. et al. Rtt101 and Mms1 in budding yeast form a CUL4(DDB1)-like ubiquitin ligase that promotes replication through damaged DNA. EMBO Rep. 9, 1034–1040 (2008).

    Article  CAS  Google Scholar 

  20. Zhao, X., Muller, E. G. & Rothstein, R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2, 329–340 (1998).

    Article  CAS  Google Scholar 

  21. Ijpma, A. S. & Greider, C. W. Short Telomeres Induce a DNA Damage Response in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 987–1001 (2003).

    Article  CAS  Google Scholar 

  22. Bianchi, A. & Shore, D. Increased association of telomerase with short telomeres in yeast. Genes Dev. 21, 1726–1730 (2007).

    Article  CAS  Google Scholar 

  23. Arneric, M. & Lingner, J. Tel1 kinase and subtelomere-bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast. EMBO Rep. 8, 1080–1085. (2007).

    Article  CAS  Google Scholar 

  24. Hector, R. E. et al. Tel1p preferentially associates with short telomeres to stimulate their elongation. Mol. Cell 27, 851–858 (2007).

    Article  CAS  Google Scholar 

  25. Ritchie, K. B., Mallory, J. C. & Petes, T. D. Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 6065–6075 (1999).

    Article  CAS  Google Scholar 

  26. Mantiero, D., Clerici, M., Lucchini, G. & Longhese, M. P. Dual role for Saccharomyces cerevisiae Tel1 in the checkpoint response to double-strand breaks. EMBO Rep. 8, 380–387 (2007).

    Article  CAS  Google Scholar 

  27. Sadaie, M., Naito, T. & Ishikawa, F. Stable inheritance of telomere chromatin structure and function in the absence of telomeric repeats. Genes Dev. 17, 2271–2282 (2003).

    Article  CAS  Google Scholar 

  28. Khadaroo, B. et al. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nature Cell Biol., doi: 10.1038/ncb1910 (this issue).

  29. Schaetzlein, S. et al. Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional mice. Cell 130, 863–877 (2007).

    Article  CAS  Google Scholar 

  30. Jeyapalan, J. C., Ferreira, M., Sedivy, J. M. & Herbig, U. Accumulation of senescent cells in mitotic tissue of aging primates. Mech. Ageing Dev. 128, 36–44 (2007).

    Article  CAS  Google Scholar 

  31. Marcand, S., Gilson, E. & Shore, D. A protein-counting mechanism for telomere length regulation in yeast. Science 275, 986–990 (1997). .

    Article  CAS  Google Scholar 

  32. Mallory, J. C. & Petes, T. D. Protein kinase activity of Tel1p and Mec1p, two Saccharomyces cerevisiae proteins related to the human ATM protein kinase. Proc. Natl Acad. Sci. USA 97, 13749–13754 (2000).

    Article  CAS  Google Scholar 

  33. Longhese, M. P., Paciotti, V., Neecke, H. & Lucchini, G. Checkpoint proteins influence telomeric silencing and length maintenance in budding yeast. Genetics 155, 1577–1591 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Abramoff, M. D., Magelhaes, P. J. & Ram, S. J. Image Processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).

    Google Scholar 

  35. Ihaka, R. & Gentleman, R. R. : a language for data analysis and graphics. J. Comp. Graph. Stat. 5, 299–314 (1996).

    Google Scholar 

  36. Tresaugues, L. et al. Structural characterization of Set1 RNA recognition motifs and their role in histone H3 lysine 4 methylation. J. Mol. Biol. 359, 1170–1181 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Wellinger and L. Rudolph for fruitful suggestions, G. Yvert and C. Lopes for advice in statistical analysis and A. Jacquier for sharing unpublished material. We also thank T. Petes, M. P. Longhese and S. Marcand for strains and plasmids. P.A. gratefully acknowledges the financial support of the Lebanese National council for Scientific Research (CNRSL) and the Association pour la Recherche sur le Cancer (ARC). This work was supported by La Ligue Contre le Cancer (E.G. and V.G., équipes labellisées), the INCa programmes TELINCA and TELOFUN (E.G. and V.G.), The Danish Agency for Science, Technology and Innovation (M.L.), the Villum Kann Rasmussen Foundation (M.L.) and the National Institutes of Health (K.R.).

Author information

Authors and Affiliations

Authors

Contributions

P.A., P.L. and M.T.T. carried out and analysed the experiments. E.G. and M.T.T. designed and directed the project with the contribution of K.W.R., M.L. and V.G.

Corresponding author

Correspondence to Eric Gilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 835 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdallah, P., Luciano, P., Runge, K. et al. A two-step model for senescence triggered by a single critically short telomere. Nat Cell Biol 11, 988–993 (2009). https://doi.org/10.1038/ncb1911

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1911

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing