Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of chromosome sequence motifs that mediate meiotic pairing and synapsis in C. elegans

An Erratum to this article was published on 01 September 2009

Abstract

Caenorhabditis elegans chromosomes contain specialized regions called pairing centres, which mediate homologous pairing and synapsis during meiosis. Four related proteins, ZIM-1, 2, 3 and HIM-8, associate with these sites and are required for their essential functions. Here we show that short sequence elements enriched in the corresponding chromosome regions selectively recruit these proteins in vivo. In vitro analysis using SELEX indicates that the binding specificity of each protein arises from a combination of two zinc fingers and an adjacent domain. Insertion of a cluster of recruiting motifs into a chromosome lacking its endogenous pairing centre is sufficient to restore homologous pairing, synapsis, crossover recombination and segregation. These findings help to illuminate how chromosome sites mediate essential aspects of meiotic chromosome dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The X chromosome pairing centre region.
Figure 2: ZIM/HIM-8 recruitment motifs.
Figure 3: Sequence-specific binding by ZIM-2, ZIM-3, and HIM-8 protein fragments.
Figure 4: ZIM/HIM-8 recruiting arrays associate with nuclear envelope components.
Figure 5: HIM-8 recruitment motifs are sufficient for pairing centre function.
Figure 6: ZIM/HIM-8 proteins can interchangeably support pairing centre function.

Similar content being viewed by others

References

  1. McKim, K. S., Howell, A. M. & Rose, A. M. The effects of translocations on recombination frequency in Caenorhabditis elegans. Genetics 120, 987–1001 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. McKim, K. S., Peters, K. & Rose, A. M. Two types of sites required for meiotic chromosome pairing in Caenorhabditis elegans. Genetics 134, 749–768 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Villeneuve, A. M. A cis-acting locus that promotes crossing over between X chromosomes in Caenorhabditis elegans. Genetics 136, 887–902 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zetka, M. & Rose, A. The genetics of meiosis in Caenorhabditis elegans. Trends Genet. 11, 27–31 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Zetka, M. C. & Rose, A. M. The meiotic behavior of an inversion in Caenorhabditis elegans. Genetics 131, 321–332 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. MacQueen, A. J., Colaiacovo, M. P., McDonald, K. & Villeneuve, A. M. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 16, 2428–2442 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. MacQueen, A. J. et al. Chromosome sites play dual roles to establish homologous synapsis during meiosis in C. elegans. Cell 123, 1037–1050 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Phillips, C. M. & Dernburg, A. F. A family of zinc-finger proteins is required for chromosome-specific pairing and synapsis during meiosis in C. elegans. Dev. Cell 11, 817–829 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Phillips, C. M. et al. HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis. Cell 123, 1051–1063 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Herman, R. K. & Kari, C. K. Recombination between small X chromosome duplications and the X chromosome in Caenorhabditis elegans. Genetics 121, 723–737 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hodgkin, J., Horvitz, H. R. & Brenner, S. Nondisjunction mutants of the nematode Caenorhabditis elegans. Genetics 91, 67–94 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Swan, K. A. et al. High-throughput gene mapping in Caenorhabditis elegans. Genome Res. 12, 1100–1105 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wicks, S. R., Yeh, R. T., Gish, W. R., Waterston, R. H. & Plasterk, R. H. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nature Genet. 28, 160–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Nicoll, M., Akerib, C. C. & Meyer, B. J. X-chromosome-counting mechanisms that determine nematode sex. Nature 388, 200–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kelly, W. G. et al. X-chromosome silencing in the germline of C. elegans. Development 129, 479–492 (2002).

    CAS  PubMed  Google Scholar 

  17. Dawes, H. E. et al. Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate. Science 284, 1800–1804 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. McDonel, P., Jans, J., Peterson, B. K. & Meyer, B. J. Clustered DNA motifs mark X chromosomes for repression by a dosage compensation complex. Nature 444, 614–618 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sanford, C. & Perry, M. D. Asymmetrically distributed oligonucleotide repeats in the Caenorhabditis elegans genome sequence that map to regions important for meiotic chromosome segregation. Nucleic Acids Res. 29, 2920–2926 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller, J., McLachlan, A. D. & Klug, A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4, 1609–1614 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tupler, R., Perini, G. & Green, M. R. Expressing the human genome. Nature 409, 832–833 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Pavletich, N. P. & Pabo, C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252, 809–817 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Kadonaga, J. T., Carner, K. R., Masiarz, F. R. & Tjian, R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51, 1079–1090 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Perez, E. E. et al. Establishment of HIV-1 resistance in CD4(+) T cells by genome editing using zinc-finger nucleases. Nature Biotech. 26, 808–816 (2008).

    Article  CAS  Google Scholar 

  25. Malone, C. J. et al. The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 115, 825–836 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Penkner, A. et al. The nuclear envelope protein Matefin/SUN-1 is required for homologous pairing in C. elegans meiosis. Dev. Cell 12, 873–885 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Colaiacovo, M. P. et al. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev. Cell 5, 463–474 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Dernburg, A. F. et al. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94, 387–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by an NSF Predoctoral Fellowship (C.M.P.) and by Burroughs Wellcome Career Award 1000950 and NIH R01 GM065591 (A.F.D.). We are grateful to Anne Villeneuve for SYP-1 antibodies, Barbara Meyer, Kevin Corbett and Ed Rebar for valuable suggestions, to members of the Meyer lab for assistance with the extrachromosomal array assay and to members of the Dernburg lab and anonymous referees for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.M.P. and A.F.D. designed most experiments and wrote the manuscript. J.H.C. provided cDNA clones for the SELEX assays, which were executed by X.M. and L.Z. with guidance from F.D.U. All other experiments were performed by C.M.P.

Corresponding author

Correspondence to Abby F. Dernburg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1558 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, C., Meng, X., Zhang, L. et al. Identification of chromosome sequence motifs that mediate meiotic pairing and synapsis in C. elegans. Nat Cell Biol 11, 934–942 (2009). https://doi.org/10.1038/ncb1904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing