Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis

Abstract

Histone levels are tightly regulated to prevent harmful effects such as genomic instability and hypersensitivity to DNA-damaging agents due to the accumulation of these highly basic proteins when DNA replication slows down or stops. Although chromosomal histones are stable, excess (non-chromatin bound) histones are rapidly degraded in a Rad53 (radiation sensitive 53) kinase-dependent manner in Saccharomyces cerevisiae. Here we demonstrate that excess histones associate with Rad53 in vivo and seem to undergo modifications such as tyrosine phosphorylation and polyubiquitylation, before their proteolysis by the proteasome. We have identified the Tyr 99 residue of histone H3 as being critical for the efficient ubiquitylation and degradation of this histone. We have also identified the ubiquitin conjugating enzymes (E2) Ubc4 and Ubc5, as well as the ubiquitin ligase (E3) Tom1 (temperature dependent organization in mitotic nucleus 1), as enzymes involved in the ubiquitylation of excess histones. Regulated histone proteolysis has major implications for the maintenance of epigenetic marks on chromatin, genomic stability and the packaging of sperm DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histones associated with Rad53 are phosphorylated, which is required for efficient histone degradation.
Figure 2: Histones associated with Rad53 are ubiquitylated and the Tyr 99 residue of histone H3 is critical for its ubiquitylation.
Figure 3: Functional proteasomes are required for the degradation of excess histones.
Figure 4: Identification of the putative E2 and E3 enzymes involved in the degradation-related ubiquitylation of histones.
Figure 5: Yeast cells lacking the factors involved in histone degradation accumulate excess endogenous histones bound to histone chaperones Asf1 and Cac1.
Figure 6: Ubc4, Ubc5, Tom1 and Rad53 interact with each other in vivo and can ubiquitylate histones in vitro.

Similar content being viewed by others

References

  1. Gunjan, A., Paik, J. & Verreault, A. The emergence of regulated histone proteolysis. Curr. Opin. Genet. Dev. 16, 112–118 (2006).

    Article  CAS  Google Scholar 

  2. Han, M., Chang, M., Kim, U. J. & Grunstein, M. Histone H2B repression causes cell-cycle-specific arrest in yeast: effects on chromosomal segregation, replication, and transcription. Cell 48, 589–597 (1987).

    Article  CAS  Google Scholar 

  3. Eriksson, P. R. et al. Global regulation by the yeast Spt10 protein is mediated through chromatin structure and the histone upstream activating sequence elements. Mol. Cell. Biol. 25, 9127–9137 (2005).

    Article  CAS  Google Scholar 

  4. Myung, K., Pennaneach, V., Kats, E. S. & Kolodner, R. D. Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc. Natl Acad. Sci. USA 100, 6640–6645 (2003).

    Article  CAS  Google Scholar 

  5. Nelson, D. M. et al. Coupling of DNA synthesis and histone synthesis in S phase independent of cyclin/cdk2 activity. Mol. Cell. Biol. 22, 7459–7472 (2002).

    Article  CAS  Google Scholar 

  6. Ye, X. et al. Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol. Cell 11, 341–351 (2003).

    Article  CAS  Google Scholar 

  7. Bonner, W. M., Wu, R. S., Panusz, H. T. & Muneses, C. Kinetics of accumulation and depletion of soluble newly synthesized histone in the reciprocal regulation of histone and DNA synthesis. Biochemistry 27, 6542–6550 (1988).

    Article  CAS  Google Scholar 

  8. Groth, A. et al. Human Asf1 regulates the flow of S phase histones during replicational stress. Mol. Cell 17, 301–311 (2005).

    Article  CAS  Google Scholar 

  9. Gunjan, A. & Verreault, A. A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115, 537–549 (2003).

    Article  CAS  Google Scholar 

  10. Steger, D. J. & Workman, J. L. Transcriptional analysis of purified histone acetyltransferase complexes. Methods 19, 410–416 (1999).

    Article  CAS  Google Scholar 

  11. Meeks-Wagner, D. & Hartwell, L. H. Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell 44, 43–52 (1986).

    Article  CAS  Google Scholar 

  12. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  Google Scholar 

  13. Osley, M. A. The regulation of histone synthesis in the cell cycle. Annu. Rev. Biochem. 60, 827–861 (1991).

    Article  CAS  Google Scholar 

  14. Kaygun, H. & Marzluff, W. F. Translation termination is involved in histone mRNA degradation when DNA replication is inhibited. Mol. Cell. Biol. 25, 6879–6888 (2005).

    Article  CAS  Google Scholar 

  15. Guan, K. L. & Dixon, J. E. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249, 553–556 (1990).

    Article  CAS  Google Scholar 

  16. Stern, D. F., Zheng, P., Beidler, D. R. & Zerillo, C. Spk1, a new kinase from Saccharomyces cerevisiae, phosphorylates proteins on serine, threonine, and tyrosine. Mol. Cell. Biol. 11, 987–1001 (1991).

    Article  CAS  Google Scholar 

  17. Cheung, P., Allis, C. D. & Sassone-Corsi, P. Signaling to chromatin through histone modifications. Cell 103, 263–271 (2000).

    Article  CAS  Google Scholar 

  18. Dai, J. et al. Probing nucleosome function: a highly versatile library of synthetic histone H3 and H4 mutants. Cell 134, 1066–1078 (2008).

    Article  CAS  Google Scholar 

  19. Nakanishi, S. et al. A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. Nature Struct. Mol. Biol. 15, 881–888 (2008).

    Article  CAS  Google Scholar 

  20. Wittschieben, B. O., Fellows, J., Du, W., Stillman, D. J. & Svejstrup, J. Q. Overlapping roles for the histone acetyltransferase activities of SAGA and elongator in vivo. EMBO J. 19, 3060–3068 (2000).

    Article  CAS  Google Scholar 

  21. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  22. Commerford, S. L., Carsten, A. L. & Cronkite, E. P. Histone turnover within nonproliferating cells. Proc. Natl Acad. Sci. USA 79, 1163–1165 (1982).

    Article  CAS  Google Scholar 

  23. Tsvetkov, S., Ivanova, E. & Djondjurov, L. Metabolic behaviors of the core histones in proliferating Friend cells. Exp. Cell. Res. 180, 94–105 (1989).

    Article  CAS  Google Scholar 

  24. Wunsch, A. M. & Lough, J. Histones synthesized at different stages of myogenesis are differentially degraded in myotube cells. J. Cell Physiol. 141, 97–102 (1989).

    Article  CAS  Google Scholar 

  25. Haas, A. L. & Bright, P. M. The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates. J. Biol. Chem. 260, 12464–12473 (1985).

    CAS  PubMed  Google Scholar 

  26. Chen, H. Y., Sun, J. M., Zhang, Y., Davie, J. R. & Meistrich, M. L. Ubiquitination of histone H3 in elongating spermatids of rat testes. J. Biol. Chem. 273, 13165–13169 (1998).

    Article  CAS  Google Scholar 

  27. Geng, F. & Tansey, W. P. Polyubiquitylation of histone H2B. Mol. Biol. Cell. 19, 3616–3624 (2008).

    Article  CAS  Google Scholar 

  28. Spence, J. et al. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell 102, 67–76 (2000).

    Article  CAS  Google Scholar 

  29. Davie, J. R. Peptide mapping of basic proteins by proteolysis in acetic acid/urea-minislab polyacrylamide gels. Anal. Biochem. 144, 522–526 (1985).

    Article  CAS  Google Scholar 

  30. Li, W., Nagaraja, S., Delcuve, G. P., Hendzel, M. J. & Davie, J. R. Effects of histone acetylation, ubiquitination and variants on nucleosome stability. Biochem. J. 296, 737–744 (1993).

    Article  CAS  Google Scholar 

  31. Hilt, W., Enenkel, C., Gruhler, A., Singer, T. & Wolf, D. H. The PRE4 gene codes for a subunit of the yeast proteasome necessary for peptidylglutamyl-peptide-hydrolyzing activity. Mutations link the proteasome to stress- and ubiquitin-dependent proteolysis. J. Biol. Chem. 268, 3479–3486 (1993).

    CAS  PubMed  Google Scholar 

  32. Ghislain, M., Udvardy, A. & Mann, C. S. cerevisiae 26S protease mutants arrest cell division in G2/metaphase. Nature 366, 358–362 (1993).

    Article  CAS  Google Scholar 

  33. McGrath, J. P., Jentsch, S. & Varshavsky, A. UBA1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J. 10, 227–236 (1991).

    Article  CAS  Google Scholar 

  34. Seufert, W. & Jentsch, S. Ubiquitin-conjugating enzymes Ubc4 and Ubc5 mediate selective degradation of short-lived and abnormal proteins. EMBO J. 9, 543–550 (1990).

    Article  CAS  Google Scholar 

  35. Robzyk, K., Recht, J. & Osley, M. A. Rad6-dependent ubiquitination of histone H2B in yeast. Science 287, 501–504 (2000).

    Article  CAS  Google Scholar 

  36. Ardley, H. C. & Robinson, P. A. E3 ubiquitin ligases. Essays Biochem. 41, 15–30 (2005).

    Article  CAS  Google Scholar 

  37. English, C. M., Adkins, M. W., Carson, J. J., Churchill, M. E. & Tyler, J. K. Structural basis for the histone chaperone activity of Asf1. Cell 127, 495–508 (2006).

    Article  CAS  Google Scholar 

  38. Pellicioli, A. et al. Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J. 18, 6561–6572 (1999).

    Article  CAS  Google Scholar 

  39. Paulovich, A. G. & Hartwell, L. H. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82, 841–847 (1995).

    Article  CAS  Google Scholar 

  40. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

  41. Lee, S. J., Schwartz, M. F., Duong, J. K. & Stern, D. F. Rad53 phosphorylation site clusters are important for Rad53 regulation and signaling. Mol. Cell. Biol. 23, 6300–6314 (2003).

    Article  CAS  Google Scholar 

  42. Mayor, T., Lipford, J. R., Graumann, J., Smith, G. T. & Deshaies, R. J. Analysis of polyubiquitin conjugates reveals that the Rpn10 substrate receptor contributes to the turnover of multiple proteasome targets. Mol. Cell. Proteomics 4, 741–751 (2005).

    Article  CAS  Google Scholar 

  43. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nature Biotech. 21, 921–926 (2003).

    Article  CAS  Google Scholar 

  44. Santisteban, M. S., Arents, G., Moudrianakis, E. N. & Smith, M. M. Histone octamer function in vivo: mutations in the dimer–tetramer interfaces disrupt both gene activation and repression. EMBO J. 16, 2493–2506 (1997).

    Article  CAS  Google Scholar 

  45. White, C. L., Suto, R. K. & Luger, K. Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J. 20, 5207–5218 (2001).

    Article  CAS  Google Scholar 

  46. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 (2004).

    Article  CAS  Google Scholar 

  47. Varshavsky, A. The N-end rule: functions, mysteries, uses. Proc. Natl Acad. Sci. USA 93, 12142–12149 (1996).

    Article  CAS  Google Scholar 

  48. Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).

    Article  CAS  Google Scholar 

  49. Utsugi, T. et al. Yeast tom1 mutant exhibits pleiotropic defects in nuclear division, maintenance of nuclear structure and nucleocytoplasmic transport at high temperatures. Gene 234, 285–295 (1999).

    Article  CAS  Google Scholar 

  50. Saleh, A. et al. TOM1p, a yeast hect-domain protein which mediates transcriptional regulation through the ADA/SAGA coactivator complexes. J. Mol. Biol. 282, 933–946 (1998).

    Article  CAS  Google Scholar 

  51. Shan, X., Xue, Z. & Mélèse, T. Yeast NPI46 encodes a novel prolyl cis-trans isomerase that is located in the nucleolus. J. Cell Biol. 126, 853–862 (1994).

    Article  CAS  Google Scholar 

  52. Meistrich, M. L. in Histones and other Basic Nuclear Proteins (eds Hnilica, L.S., Stein, G.S. & Stein, J.L.) Ch. 4, 165–182 (CRC Press, 1989).

    Google Scholar 

  53. Rajapurohitam, V., Morales, C. R., El-Alfy, M., Lefrançois, S., Bedard, N. & Wing, S. S. Activation of a UBC4-dependent pathway of ubiquitin conjugation during postnatal development of the rat testis. Dev. Biol. 212, 217–228 (1999).

    Article  CAS  Google Scholar 

  54. Wing, S. S., Bedard, N., Morales, C., Hingamp, P. & Trasler, J. A novel rat homolog of the Saccharomyces cerevisiae ubiquitin-conjugating enzymes Ubc4 and Ubc5 with distinct biochemical features is induced during spermatogenesis. Mol. Cell. Biol. 16, 4064–4072 (1996).

    Article  CAS  Google Scholar 

  55. Liu, Z., Oughtred, R. & Wing, S. S. Characterization of E3Histone, a novel testis ubiquitin protein ligase which ubiquitinates histones. Mol. Cell. Biol. 25, 2819–2831 (2005).

    Article  CAS  Google Scholar 

  56. Krogan, N. J. et al. Proteasome involvement in the repair of DNA double-strand breaks. Mol. Cell 16, 1027–1034 (2004).

    Article  CAS  Google Scholar 

  57. Tsukuda, T., Fleming, A. B., Nickoloff, J. A. & Osley, M. A. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438, 379–383 (2005).

    Article  CAS  Google Scholar 

  58. Collins, K. A., Furuyama, S. & Biggins, S. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr. Biol. 14, 1968–1972 (2004).

    Article  CAS  Google Scholar 

  59. Moreno-Moreno, O., Torras-Llort, M. & Azorin, F. Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres. Nucleic Acids Res. 34, 6247–6255 (2006).

    Article  CAS  Google Scholar 

  60. Ullrich, O. et al. Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc. Natl Acad. Sci. USA 96, 6223–6228 (1999).

    Article  CAS  Google Scholar 

  61. Kushnirov, V. V. Rapid and reliable protein extraction from yeast. Yeast 16, 857–860 (2000).

    Article  CAS  Google Scholar 

  62. Matuschewski, K., Hauser, H. P., Treier, M. & Jentsch, S. Identification of a novel family of ubiquitin-conjugating enzymes with distinct amino-terminal extensions. J. Biol. Chem. 271, 2789–2794 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Diffley, D. Finley, M. Hochstrasser, S. Jentsch, N. Lowndes, C. Mann, H. Masumoto, M. A. Osley, R. Rothstein, D. Stern, D. Stillman, J. Svejstrup, A. Verreault and Y. Wang for strains and reagents, A. Verreault and D. Brown for critical reading of this manuscript, M. Abdul-Rauf for construction of the pYES2–HTH and pYES2–HTH–HHT2 plasmids, as well as the H4 mutants used in the Supplementary Information and undergraduate students S. Eckley and M. Gonzalez for technical assistance with the collection of many litres of yeast cultures for our experiments. We thank M. Blaber for assistance with the structural modelling of the Y 99 residue of histone H3, shown in Supplementary Information, Fig. S8. Research in AG's laboratory is supported by a Bankhead-Coley Cancer Research Program grant (07BN-02) from the Florida Department of Health and research in JP's laboratory is funded by a NIH grant (R15GM079678-01).

Author information

Authors and Affiliations

Authors

Contributions

R.K.S. performed 70% of the experiments, aided in the design of several experiments and helped write parts of the manuscript; M.M.K. carried out 5% of the experiments, provided technical support and assisted R.K.S. as well as A.G. with experiments; J.P. aided in the conceptual design of some experiments and helped with manuscript preparation; A.G. performed 25% of the experiments, was in charge of the overall design of experiments and wrote the manuscript with help from R.K.S. and J.P.

Corresponding author

Correspondence to Akash Gunjan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1478 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R., Kabbaj, MH., Paik, J. et al. Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis. Nat Cell Biol 11, 925–933 (2009). https://doi.org/10.1038/ncb1903

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1903

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing