Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transmission and spreading of tauopathy in transgenic mouse brain

Abstract

Hyperphosphorylated tau makes up the filamentous intracellular inclusions of several neurodegenerative diseases, including Alzheimer's disease1. In the disease process, neuronal tau inclusions first appear in the transentorhinal cortex from where they seem to spread to the hippocampal formation and neocortex2. Cognitive impairment becomes manifest when inclusions reach the hippocampus, with abundant neocortical tau inclusions and extracellular β-amyloid deposits being the defining pathological hallmarks of Alzheimer's disease. An abundance of tau inclusions, in the absence of β-amyloid deposits, defines Pick's disease, progressive supranuclear palsy, corticobasal degeneration and other diseases1. Tau mutations cause familial forms of frontotemporal dementia, establishing that tau protein dysfunction is sufficient to cause neurodegeneration and dementia3,4,5. Thus, transgenic mice expressing mutant (for example, P301S) human tau in nerve cells show the essential features of tauopathies, including neurodegeneration and abundant filaments made of hyperphosphorylated tau protein6,8. By contrast, mouse lines expressing single isoforms of wild-type human tau do not produce tau filaments or show neurodegeneration7,8. Here we have used tau-expressing lines to investigate whether experimental tauopathy can be transmitted. We show that injection of brain extract from mutant P301S tau-expressing mice into the brain of transgenic wild-type tau-expressing animals induces assembly of wild-type human tau into filaments and spreading of pathology from the site of injection to neighbouring brain regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of filamentous tau pathology in ALZ17 mice injected with brain extract from mice transgenic for human P301S tau.
Figure 2: Temporal increase in the number of Gallyas-Braak-positive structures at the injection sites (–2.
Figure 3: Spreading of filamentous tau pathology in ALZ17 mice injected with brain extract from mice transgenic for human P301S tau.
Figure 4: Induction of filamentous tau pathology in non-transgenic C57BL/6 mice injected with brain extract from mice transgenic for human P301S tau.

Similar content being viewed by others

References

  1. Goedert, M. & Spillantini, M. G. A century of Alzheimer's disease. Science 314, 777–781 (2006).

    Article  CAS  Google Scholar 

  2. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Article  CAS  Google Scholar 

  3. Poorkaj, P. et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann. Neurol. 43, 815–825 (1998).

    Article  CAS  Google Scholar 

  4. Hutton, M. et al. Association of missense and 5´-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  Google Scholar 

  5. Spillantini, M. G. et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl Acad. Sci. USA 95, 7737–7741 (1998).

    Article  CAS  Google Scholar 

  6. Allen, B. et al. Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J. Neurosci. 22, 9340–9351 (2002).

    Article  CAS  Google Scholar 

  7. Probst, A. et al. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol. 99, 469–481 (2000).

    Article  CAS  Google Scholar 

  8. Frank, S., Clavaguera, F. & Tolnay, M. Tauopathy models and human neuropathology: similarities and differences. Acta Neuropathol. 115, 39–53 (2008).

    Article  Google Scholar 

  9. Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D. & Crowther, R. A. Multiple isoforms of human microtubule-associated protein tau: Sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3, 519–526 (1989).

    Article  CAS  Google Scholar 

  10. Gallyas, F. Silver staining of Alzheimer's neurofibrillary changes by means of physical development. Acta Morphol. Acad. Sci. Hung. 19, 1–8 (1971).

    CAS  PubMed  Google Scholar 

  11. Braak, H., Braak, E., Ohm, T. & Bohl, J. Silver impregnation of Alzheimer's neurofibrillary changes counterstained for basophilic material and lipofuscin pigment. Stain Technol. 63, 197–200 (1988).

    Article  CAS  Google Scholar 

  12. Lee, V. M.-Y., Goedert, M. & Trojanowski, J. Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 1121–1159 (2001).

    Article  CAS  Google Scholar 

  13. Crowther, R. A. & Goedert, M. Abnormal tau-containing filaments in neurodegenerative diseases. J. Struct. Biol. 130, 271–279 (2000).

    Article  CAS  Google Scholar 

  14. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  Google Scholar 

  15. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004).

    Article  CAS  Google Scholar 

  16. Kane, M. D. et al. Evidence for seeding of β-amyloid by intracerebral infusion of Alzheimer brain extracts in β amyloid precursor protein-transgenic mice. J. Neurosci. 15, 3606–3611 (2000).

    Article  Google Scholar 

  17. Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidosis is governed by agent and host. Science 313, 1781–1784 (2006).

    Article  CAS  Google Scholar 

  18. Götz, J., Chen, F., van Dorpe, J. & Nitsch, R. M. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ 42 fibrils. Science 293, 1491–1495 (2001).

    Article  Google Scholar 

  19. Bolmont, T. et al. Induction of tau pathology by intracerebral infusion of amyloid-β-containing brain extract and by amyloid-β deposition in APP X tau transgenic mice. Am. J. Pathol. 171, 2012–2020 (2007).

    Article  CAS  Google Scholar 

  20. Xing, Y. et al. Transmission of mouse senile amyloidosis. Lab. Invest. 81, 493–499 (2001).

    Article  CAS  Google Scholar 

  21. Lundmark, K. et al. Transmissibility of systemic amyloidosis by a prion-like mechanism. Proc. Natl Acad. Sci. USA 99, 6979–6984 (2002).

    Article  CAS  Google Scholar 

  22. Walker, L. C., LeVine III, H., Mattson, M. P. & Jucker, M. Inducible proteopathies. Trends Neurosci. 29, 438–443 (2006).

    Article  CAS  Google Scholar 

  23. Boutajangout. et al. Characterisation of cytoskeletal abnormalities in mice transgenic for wild-type human tau and familial Alzheimer's disease mutants of APP and presenilin-1. Neurobiol. Dis. 15, 47–60 (2004).

    Article  CAS  Google Scholar 

  24. Urushitani, M. et al. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nature Neurosci. 9, 108–118 (2006).

    Article  CAS  Google Scholar 

  25. Asuni, A. A., Boutajangout, A., Quartermain, D. & Sigurdson, E. M. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J. Neurosci. 27, 9115–9129 (2007).

    Article  CAS  Google Scholar 

  26. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  Google Scholar 

  27. Brundin, P., Li, J.-Y., Holton, J. L., Lindvall, O. & Revesz, T. Research in motion: the enigma of Parkinson's disease pathology spread. Nature Rev. Neurosci. 9, 741–745 (2008).

    Article  CAS  Google Scholar 

  28. Brown, P. et al. Human spongiform encephalopathy: The National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann. Neurol. 35, 513–529 (1994).

    Article  CAS  Google Scholar 

  29. Mercken, M. et al. Affinity purification of human tau proteins and the construction of a sensitive sandwich enzyme-linked immunosorbent assay for human tau detection. J. Neurochem. 58, 548–553 (1992).

    Article  CAS  Google Scholar 

  30. Goedert, M., Jakes, R. & Vanmechelen, E. Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205. Neurosci. Lett. 189, 167–170 (1995).

    Article  CAS  Google Scholar 

  31. Yoshida, H. & Goedert, M. Sequential phosphorylation of tau protein by cAMP-dependent protein kinase and SAPK4/p38δ or JNK2 in the presence of heparin generates the AT100 epitope. J. Neurochem. 99, 154–164 (2006).

    Article  CAS  Google Scholar 

  32. Kosik, K. S. et al. Epitopes that span the tau molecule are shared with paired helical filaments. Neuron 1, 817–825 (1988).

    Article  CAS  Google Scholar 

  33. Crowther, R. A. Straight and paired helical filaments in Alzheimer disease have a common structural unit. Proc. Natl Acad. Sci. USA 88, 2288–2292 (1991).

    Article  CAS  Google Scholar 

  34. Goedert, M., Spillantini, M. G., Cairns, N. J. & Crowther, R. A. Tau proteins of Alzheimer paired helical filaments: Abnormal phosphorylation of all six brain isoforms. Neuron 8, 159–168 (1992).

    Article  CAS  Google Scholar 

  35. Franklin, K.B. J. & Paxinos, G. The mouse brain in stereotaxic coordinates. (Academic Press, New York, 2001).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (3100AO-120261) (M.T.), the Alzheimer Association (ZEN-06-27341), the German National Genome Network (NGFN-Plus) and the German Competence Network in Degenerative Dementias (01GI0705) (M.J.), the U.K. Medical Research Council (R.A.C, G.F., M.G.) and the U.K. Alzheimer's Research Trust (M.G.). We thank K.H. Wiederhold (Novartis Institutes for Biomedical Research, Basel) and N. Schaeren-Wiemers (University Hospital Basel) for antibodies and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

F.C., R.A.C., M.G. and M.T. designed the experiments, coordinated the project and wrote the manuscript. M.J. initiated the study. F.C., T.B., R.A.C. D.A., G.F., A.K.S. and M.G. performed the experimental work. A.P. assisted with assessment and interpretation of initiation and neuroanatomical spreading of tau pathology. M.B. performed statistical analyses. M.S., S.F. and M.J. contributed to data and manuscript discussions.

Corresponding authors

Correspondence to Michel Goedert or Markus Tolnay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 902 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clavaguera, F., Bolmont, T., Crowther, R. et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11, 909–913 (2009). https://doi.org/10.1038/ncb1901

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1901

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing