Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The tyrosine kinase Stitcher activates Grainy head and epidermal wound healing in Drosophila

Abstract

Epidermal injury initiates a cascade of inflammation, epithelial remodelling and integument repair at wound sites. The regeneration of the extracellular barrier and damaged tissue repair rely on the precise orchestration of epithelial responses triggered by the injury1,2. Grainy head (Grh) transcription factors induce gene expression to crosslink the extracellular barrier in wounded flies and mice3,4. However, the activation mechanisms and functions of Grh factors in re-epithelialization remain unknown. Here we identify stitcher (stit), a new Grh target in Drosophila melanogaster. stit encodes a Ret-family receptor tyrosine kinase required for efficient epidermal wound healing. Live imaging analysis reveals that Stit promotes actin cable assembly during wound re-epithelialization. Stit activation also induces extracellular signal-regulated kinase (ERK) phosphorylation along with the Grh-dependent expression of stit and barrier repair genes at the wound sites. The transcriptional stimulation of stit on injury triggers a positive feedback loop increasing the magnitude of epithelial responses. Thus, Stit activation upon wounding coordinates cytoskeletal rearrangements and the level of Grh-mediated transcriptional wound responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: stit is a Grh target gene.
Figure 2: Re-epithelialization defects in stit mutants.
Figure 3: Stit is a tyrosine kinase sufficient for ERK activation in vivo.
Figure 4: Stit localizes apically in epidermal cells and accumulates at wound sites.
Figure 5: Stit activates the induction of wound reporters dependent on ERK and Grh.

Similar content being viewed by others

References

  1. Schafer, M. & Werner, S. Transcriptional control of wound repair. Annu. Rev. Cell Dev. Biol. 23, 69–92 (2007).

    Article  CAS  Google Scholar 

  2. Werner, S. & Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 83, 835–870 (2003).

    Article  CAS  Google Scholar 

  3. Mace, K. A., Pearson, J. C. & McGinnis, W. An epidermal barrier wound repair pathway in Drosophila is mediated by grainy head. Science 308, 381–385 (2005).

    Article  CAS  Google Scholar 

  4. Ting, S. B. et al. A homolog of Drosophila grainy head is essential for epidermal integrity in mice. Science 308, 411–413 (2005).

    Article  CAS  Google Scholar 

  5. Harden, N. Cell biology. Of grainy heads and broken skins. Science 308, 364–365 (2005).

    Article  CAS  Google Scholar 

  6. Stramer, B. & Martin, P. Cell biology: master regulators of sealing and healing. Curr. Biol. 15, R425–R427 (2005).

    Article  CAS  Google Scholar 

  7. Uv, A. E., Harrison, E. J. & Bray, S. J. Tissue-specific splicing and functions of the Drosophila transcription factor Grainyhead. Mol. Cell. Biol. 17, 6727–6735 (1997).

    Article  CAS  Google Scholar 

  8. Venkatesan, K., McManus, H. R., Mello, C. C., Smith, T. F. & Hansen, U. Functional conservation between members of an ancient duplicated transcription factor family, LSF/Grainyhead. Nucleic Acids Res. 31, 4304–4316 (2003).

    Article  CAS  Google Scholar 

  9. Narasimha, M., Uv, A., Krejci, A., Brown, N. H. & Bray, S. J. Grainy head promotes expression of septate junction proteins and influences epithelial morphogenesis. J. Cell Sci. 121, 747–752 (2008).

    Article  CAS  Google Scholar 

  10. Barolo, S., Carver, L. A. & Posakony, J. W. GFP and β-galactosidase transformation vectors for promoter/enhancer analysis in Drosophila. Biotechniques 29, 726, 728, 730, 732 (2000).

    Article  CAS  Google Scholar 

  11. Bray, S. J. & Kafatos, F. C. Developmental function of Elf-1: an essential transcription factor during embryogenesis in Drosophila. Genes Dev. 5, 1672–1683 (1991).

    Article  CAS  Google Scholar 

  12. Hemphala, J., Uv, A., Cantera, R., Bray, S. & Samakovlis, C. Grainy head controls apical membrane growth and tube elongation in response to Branchless/FGF signalling. Development 130, 249–258 (2003).

    Article  CAS  Google Scholar 

  13. Edwards, K. A., Demsky, M., Montague, R. A., Weymouth, N. & Kiehart, D. P. GFP–moesin illuminates actin cytoskeleton dynamics in living tissue and demonstrates cell shape changes during morphogenesis in Drosophila. Dev. Biol. 191, 103–117 (1997).

    Article  CAS  Google Scholar 

  14. Chihara, T., Kato, K., Taniguchi, M., Ng, J. & Hayashi, S. Rac promotes epithelial cell rearrangement during tracheal tubulogenesis in Drosophila. Development 130, 1419–1428 (2003).

    Article  CAS  Google Scholar 

  15. Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl Acad. Sci. USA 98, 15050–15055 (2001).

    Article  CAS  Google Scholar 

  16. Wood, W. et al. Wound healing recapitulates morphogenesis in Drosophila embryos. Nature Cell Biol. 4, 907–912 (2002).

    Article  CAS  Google Scholar 

  17. Runeberg-Roos, P. & Saarma, M. Neurotrophic factor receptor RET: structure, cell biology, and inherited diseases. Ann. Med. 39, 572–580 (2007).

    Article  CAS  Google Scholar 

  18. Fantl, W. J., Johnson, D. E. & Williams, L. T. Signalling by receptor tyrosine kinases. Annu. Rev. Biochem. 62, 453–481 (1993).

    Article  CAS  Google Scholar 

  19. Lee, T., Hacohen, N., Krasnow, M. & Montell, D. J. Regulated Breathless receptor tyrosine kinase activity required to pattern cell migration and branching in the Drosophila tracheal system. Genes Dev. 10, 2912–2921 (1996).

    Article  CAS  Google Scholar 

  20. Duchek, P., Somogyi, K., Jekely, G., Beccari, S. & Rorth, P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17–26 (2001).

    Article  CAS  Google Scholar 

  21. Brunner, D. et al. A gain-of-function mutation in Drosophila MAP kinase activates multiple receptor tyrosine kinase signaling pathways. Cell 76, 875–888 (1994).

    Article  CAS  Google Scholar 

  22. Gabay, L., Seger, R. & Shilo, B. Z. MAP kinase in situ activation atlas during Drosophila embryogenesis. Development 124, 3535–3541 (1997).

    CAS  PubMed  Google Scholar 

  23. McKay, M. M. & Morrison, D. K. Integrating signals from RTKs to ERK/MAPK. Oncogene 26, 3113–3121 (2007).

    Article  CAS  Google Scholar 

  24. Martin, P. & Parkhurst, S. M. Parallels between tissue repair and embryo morphogenesis. Development 131, 3021–3034 (2004).

    Article  CAS  Google Scholar 

  25. Zhao, M. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 442, 457–460 (2006).

    Article  CAS  Google Scholar 

  26. Jacinto, A., Martinez-Arias, A. & Martin, P. Mechanisms of epithelial fusion and repair. Nature Cell Biol. 3, E117–E123 (2001).

    Article  CAS  Google Scholar 

  27. Galko, M. J. & Krasnow, M. A. Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol. 2, E239 (2004).

    Article  Google Scholar 

  28. Wenczak, B. A., Lynch, J. B. & Nanney, L. B. Epidermal growth factor receptor distribution in burn wounds. Implications for growth factor-mediated repair. J. Clin. Invest. 90, 2392–2401 (1992).

    Article  CAS  Google Scholar 

  29. Chmielowiec, J. et al. c-Met is essential for wound healing in the skin. J. Cell Biol. 177, 151–162 (2007).

    Article  CAS  Google Scholar 

  30. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    Article  CAS  Google Scholar 

  31. Tsarouhas, V. et al. Sequential pulses of apical epithelial secretion and endocytosis drive airway maturation in Drosophila. Dev. Cell 13, 214–225 (2007).

    Article  CAS  Google Scholar 

  32. Bement, W. M., Forscher, P. & Mooseker, M. S. A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance. J. Cell Biol. 121, 565–578 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. McGinnis, S. Hayashi, S. Bray, P. Rørth, R. Hodgetts, the Bloomington, the Exelixis–Harvard Stock Centers, Developmental Studies Hybridoma Bank and Drosophila Genomics Resource Center for reagents; H. Jin, J. Hemphälä, M. Björk and I. Granel for technical assistance; and A. Uv, U. Theopold, R. Palmer, K.-A. Senti and colleagues at Wenner-Gren Institute for critical suggestions on the manuscript. Vetenskapsrådet, Cancerfonden and G. Gustafsson Stiftelsen provided financial support.

Author information

Authors and Affiliations

Authors

Contributions

M.G. and S.W. conducted the bioinformatics analysis. S.W. generated and analysed most strains, helped with live imaging and co-wrote the manuscript. V.T. performed and anlaysed the live imaging and wrote part of the manuscript. N.X. generated and analysed the kinase-dead stit strains and performed quantitative polymerase chain reaction and electrophoretic mobility-shift assays. N.S. conducted immunoprecipitation experiments. K.T. performed the electron microscopy analysis. N.N. generated the stitδ construct. C.S. designed the project, analysed results and co-wrote the manuscript.

Corresponding author

Correspondence to Christos Samakovlis.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1875 kb)

Supplementary Information

Supplementary Movie 1 (MOV 405 kb)

Supplementary Information

Supplementary Movie 2 (MOV 2507 kb)

Supplementary Information

Supplementary Movie 3 (MOV 404 kb)

Supplementary Information

Supplementary Movie 4 (MOV 958 kb)

Supplementary Information

Supplementary movie 5 (MOV 660 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Tsarouhas, V., Xylourgidis, N. et al. The tyrosine kinase Stitcher activates Grainy head and epidermal wound healing in Drosophila. Nat Cell Biol 11, 890–895 (2009). https://doi.org/10.1038/ncb1898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing