Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN

Abstract

Akt kinase is activated by transforming growth factor-β1 (TGF-β) in diabetic kidneys, and has important roles in fibrosis, hypertrophy and cell survival in glomerular mesangial cells1,2,3,4,5,6,7,8,9,10,11. However, the mechanisms of Akt activation by TGF-β are not fully understood. Here we show that TGF-β activates Akt in glomerular mesangial cells by inducing the microRNAs (miRNAs) miR-216a and miR-217, both of which target PTEN (phosphatase and tensin homologue), an inhibitor of Akt activation. These miRNAs are located within the second intron of a non-coding RNA (RP23-298H6.1-001). The RP23 promoter was activated by TGF-β and miR-192 through E-box-regulated mechanisms, as shown previously3. Akt activation by these miRs led to glomerular mesangial cell survival and hypertrophy, which were similar to the effects of activation by TGF-β. These studies reveal a mechanism of Akt activation through PTEN downregulation by two miRs, which are regulated by upstream miR-192 and TGF-β. Due to the diversity of PTEN function12,13, this miR-amplifying circuit may have key roles, not only in kidney disorders, but also in other diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression and genomic organization of miR-216a and miR-217.
Figure 2: Pten is a direct target of miR-216a and miR-217.
Figure 3: Effects of miRNA inhibitors on downstream signalling in vitro and in vivo.
Figure 4: Effects of miR-192 and miR-216a/217 on Akt downstream targets.
Figure 5: Effects of miR-192 and miR-216a + 217 on FoxO3a activity, MMCs apoptosis and hypertrophy.

Similar content being viewed by others

References

  1. Yamamoto, T., Nakamura, T., Noble, N. A., Ruoslahti, E. & Border, W. A. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc. Natl Acad. Sci. USA 90, 1814–1818 (1993).

    Article  CAS  Google Scholar 

  2. Sharma, K. & Ziyadeh, F. N. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-β as a key mediator. Diabetes 44, 1139–1146 (1995).

    Article  CAS  Google Scholar 

  3. Kato, M. et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc. Natl Acad. Sci. USA 104, 3432–3437 (2007).

    Article  CAS  Google Scholar 

  4. Kato, M. et al. Role of the Akt/FoxO3a pathway in TGF-β1-mediated mesangial cell dysfunction: a novel mechanism related to diabetic kidney disease. J. Am. Soc. Nephrol 17, 3325–3335 (2006).

    Article  CAS  Google Scholar 

  5. Mahimainathan, L., Das, F., Venkatesan, B. & Choudhury, G. G. Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN. Diabetes 55, 2115–2125 (2006).

    Article  CAS  Google Scholar 

  6. Nagai, K. et al. Gas6 induces Akt/mTOR-mediated mesangial hypertrophy in diabetic nephropathy. Kidney Int. 68, 552–561 (2005).

    Article  CAS  Google Scholar 

  7. Xin, X., Chen, S., Khan, Z. A. & Chakrabarti, S. Akt activation and augmented fibronectin production in hyperhexosemia. Am. J. Physiol. Endocrinol. Metab. 293, E1036–1044 (2007).

    Article  CAS  Google Scholar 

  8. Yi, J. Y., Shin, I. & Arteaga, C. L. Type I transforming growth factor β receptor binds to and activates phosphatidylinositol 3-kinase. J. Biol. Chem. 280, 10870–10876 (2005).

    Article  CAS  Google Scholar 

  9. Runyan, C. E., Schnaper, H. W. & Poncelet, A. C. The phosphatidylinositol 3-kinase/Akt pathway enhances Smad3-stimulated mesangial cell collagen I expression in response to transforming growth factor-β1. J. Biol. Chem. 279, 2632–2639 (2004).

    Article  CAS  Google Scholar 

  10. Ghosh Choudhury, G. & Abboud, H. E. Tyrosine phosphorylation-dependent PI 3 kinase/Akt signal transduction regulates TGFβ-induced fibronectin expression in mesangial cells. Cell Signal 16, 31–41 (2004).

    Article  Google Scholar 

  11. Wolf, G. & Ziyadeh, F. N. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int. 56, 393–405 (1999).

    Article  CAS  Google Scholar 

  12. Cully, M., You, H., Levine, A. J. & Mak, T. W. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nature Rev. Cancer 6, 184–192 (2006).

    Article  CAS  Google Scholar 

  13. Lazar, D. F. & Saltiel, A. R. Lipid phosphatases as drug discovery targets for type 2 diabetes. Nature Rev. Drug Discov. 5, 333–342 (2006).

    Article  CAS  Google Scholar 

  14. Stefani, G. & Slack, F. J. Small non-coding RNAs in animal development. Nature Rev. Mol. Cell Biol. 9, 219–230 (2008).

    Article  CAS  Google Scholar 

  15. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  16. Sun, Y. et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 32, e188 (2004).

    Article  Google Scholar 

  17. Tian, Z., Greene, A. S., Pietrusz, J. L., Matus, I. R. & Liang, M. MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res. 18, 404–411 (2008).

    Article  CAS  Google Scholar 

  18. Wang, Q. et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. Faseb J. 22, 4126–4135 (2008).

    Article  CAS  Google Scholar 

  19. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Article  CAS  Google Scholar 

  20. Hua, X., Liu, X., Ansari, D. O. & Lodish, H. F. Synergistic cooperation of TFE3 and smad proteins in TGF-β-induced transcription of the plasminogen activator inhibitor-1 gene. Genes Dev. 12, 3084–3095 (1998).

    Article  CAS  Google Scholar 

  21. Sekido, R. et al. The delta-crystallin enhancer-binding protein delta EF1 is a repressor of E2-box-mediated gene activation. Mol. Cell Biol. 14, 5692–5700 (1994).

    Article  CAS  Google Scholar 

  22. Comijn, J. et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell 7, 1267–1278 (2001).

    Article  CAS  Google Scholar 

  23. Nakagawa, Y. et al. TFE3 transcriptionally activates hepatic IRS-2, participates in insulin signaling and ameliorates diabetes. Nature Med. 12, 107–113 (2006).

    Article  CAS  Google Scholar 

  24. Wienholds, E. et al. MicroRNA expression in zebrafish embryonic development. Science 309, 310–311 (2005).

    Article  CAS  Google Scholar 

  25. Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B. & Bartel, D. P. Vertebrate microRNA genes. Science 299, 1540 (2003).

    Article  CAS  Google Scholar 

  26. Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunol. 9, 405–414 (2008).

    Article  CAS  Google Scholar 

  27. Elmen, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008).

    Article  CAS  Google Scholar 

  28. Glass, D. J. Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nature Cell Biol. 5, 87–90 (2003).

    Article  CAS  Google Scholar 

  29. Salih, D. A. & Brunet, A. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr. Opin. Cell Biol. 20, 126–136 (2008).

    Article  CAS  Google Scholar 

  30. Braun, C. J. et al. p53-Responsive MicroRNAs 192 and 215 Are Capable of Inducing Cell Cycle Arrest. Cancer Res. 68, 10094–10104 (2008).

    Article  CAS  Google Scholar 

  31. Gou, D., Zhang, H., Baviskar, P. S. & Liu, L. Primer extension-based method for the generation of a siRNA/miRNA expression vector. Physiol. Genomics 31, 554–562 (2007).

    Article  CAS  Google Scholar 

  32. Bravo-Egana, V. et al. Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem. Biophys. Res. Commun. 366, 922–926 (2008).

    Article  CAS  Google Scholar 

  33. Perren, A. et al. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am. J. Pathol. 157, 1097–1103 (2000).

    Article  CAS  Google Scholar 

  34. Omori, K. et al. Improvement of human islet cryopreservation by a p38 MAPK inhibitor. Am. J. Transplant 7, 1224–1232 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH-National Institute of Diabetes and Digestive and Kidney Diseases and the Juvenile Diabetes Research Foundation (to RN). We are grateful to M. C.-T. Hu for a generous gift of plasmids (pFRE–Luc and FoxO3a–GFP), L.Wang and J. Arizala for technical assistance and S. DaCosta for editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.K. and R.N. designed research; M.K., S.P., M.W., H.Y., L.L., I.N., A.G., and I.T. performed research; M.K., M.W., Y.N, H.S. and J.J.R. contributed new reagents/analytic tools; M.K., S.P. and I.T. analysed data and M.K. and R.N. wrote the paper.

Corresponding authors

Correspondence to Mitsuo Kato or Rama Natarajan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 851 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, M., Putta, S., Wang, M. et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 11, 881–889 (2009). https://doi.org/10.1038/ncb1897

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing