Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

WIP1 phosphatase is a negative regulator of NF-κB signalling

Abstract

Post-translational modifications of NF-κB through phosphorylations enhance its transactivation potential. Much is known about the kinases that phosphorylate NF-κB, but little is known about the phosphatases that dephosphorylate it. By using a genome-scale siRNA screen, we identified the WIP1 phosphatase as a negative regulator of NF-κB signalling. WIP1-mediated regulation of NF-κB occurs in both a p38-dependent and independent manner. Overexpression of WIP1 resulted in decreased NF-κB activation in a dose-dependent manner, whereas WIP1 knockdown resulted in increased NF-κB function. We show that WIP1 is a direct phosphatase of Ser 536 of the p65 subunit of NF-κB. Phosphorylation of Ser 536 is known to be essential for the transactivation function of p65, as it is required for recruitment of the transcriptional co-activator p300. WIP1-mediated regulation of p65 regulated binding of NF-κB to p300 and hence chromatin remodelling. Consistent with our results, mice lacking WIP1 showed enhanced inflammation. These results provide the first genetic proof that a phosphatase directly regulates NF-κB signalling in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: WIP1 negatively regulates NF-κB transcriptional activity.
Figure 2: NF-κB target genes are regulated in a p38-dependent and independent manner.
Figure 3: WIP1 regulates phosphorylation of Ser 536 of the p65 subunit of NF-κB.
Figure 4: Mice lacking WIP1 show increased activation of NF-κB target genes and p65 phosphorylation at Ser 536.
Figure 5: WIP1 is a direct phosphatase of p65 at Ser 536.

Similar content being viewed by others

References

  1. Li, Q. & Verma, I. M. NF-κB regulation in the immune system. Nature Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  Google Scholar 

  2. Hayden, M. S. & Ghosh, S. Shared principles in NF-κB signalling. Cell 132, 344–362 (2008).

    Article  CAS  Google Scholar 

  3. Karin, M. & Ben Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  Google Scholar 

  4. Bulavin, D. V. et al. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nature Genet. 31, 210–215 (2002).

    Article  CAS  Google Scholar 

  5. Bulavin, D. V. et al. Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)–p19(Arf) pathway. Nature Genet. 36, 343–350 (2004).

    Article  CAS  Google Scholar 

  6. Takekawa, M. et al. p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J. 19, 6517–6526 (2000).

    Article  CAS  Google Scholar 

  7. Lu, X., Nannenga, B. & Donehower, L. A. PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev. 19, 1162–1174 (2005).

    Article  CAS  Google Scholar 

  8. Lu, X. et al. The Wip1 Phosphatase acts as a gatekeeper in the p53–Mdm2 autoregulatory loop. Cancer Cell 12, 342–354 (2007).

    Article  CAS  Google Scholar 

  9. Shreeram, S. et al. Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol. Cell 23, 757–764 (2006).

    Article  CAS  Google Scholar 

  10. Perkins, N. D. Post-translational modifications regulating the activity and function of the NF-κB pathway. Oncogene 25, 6717–6730 (2006).

    Article  CAS  Google Scholar 

  11. Chen, L. F. et al. NF-κB RelA phosphorylation regulates RelA acetylation. Mol Cell Biol 25, 7966–7975 (2005).

    Article  CAS  Google Scholar 

  12. Madrid, L. V., Mayo, M. W., Reuther, J. Y. & Baldwin, A. S. Jr, Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-κB through utilization of the IκB kinase and activation of the mitogen-activated protein kinase p38. J. Biol. Chem. 276, 18934–18940 (2001).

    Article  CAS  Google Scholar 

  13. Vermeulen, L., De Wilde, G., Van Damme, P., Vanden Berghe, W. & Haegeman, G. Transcriptional activation of the NF-κB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J. 22, 1313–1324 (2003).

    Article  CAS  Google Scholar 

  14. Zhong, H., Voll, R. E. & Ghosh, S. Phosphorylation of NF-κ B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the co-activator CBP/p300. Mol. Cell 1, 661–671 (1998).

    Article  CAS  Google Scholar 

  15. Kim, C. et al. The kinase p38 α serves cell type-specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression. Nature Immunol. 9, 1019–1027 (2008).

    Article  CAS  Google Scholar 

  16. Saccani, S., Pantano, S. & Natoli, G. p38-Dependent marking of inflammatory genes for increased NF- κB recruitment. Nature Immunol. 3, 69–75 (2002).

    Article  CAS  Google Scholar 

  17. Choi, J. et al. Mice deficient for the wild-type p53-induced phosphatase gene (Wip1) exhibit defects in reproductive organs, immune function, and cell cycle control. Mol. Cell Biol. 22, 1094–1105 (2002).

    Article  CAS  Google Scholar 

  18. Tergaonkar, V. NF κB pathway: a good signaling paradigm and therapeutic target. Int. J. Biochem. Cell Biol. 38, 1647–1653 (2006).

    Article  CAS  Google Scholar 

  19. Delhase, M., Hayakawa, M., Chen, Y. & Karin, M. Positive and negative regulation of IκB kinase activity through IKKβ subunit phosphorylation. Science 284, 309–313 (1999).

    Article  CAS  Google Scholar 

  20. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    Article  CAS  Google Scholar 

  21. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF- κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  Google Scholar 

  22. Shembade, N. et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nature Immunol. 9, 254–262 (2008).

    Article  CAS  Google Scholar 

  23. Ananieva, O. et al. The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling. Nature Immunol. 9, 1028–1036 (2008).

    Article  CAS  Google Scholar 

  24. Palkowitsch, L., Leidner, J., Ghosh, S. & Marienfeld, R. B. Phosphorylation of Ser 68 in the IκB kinase (IKK)-binding domain of NEMO interferes with the structure of the IKK complex and tumor necrosis factor-α-induced NF- κB activity. J. Biol. Chem. 283, 76–86 (2008).

    Article  CAS  Google Scholar 

  25. Greene, W. C. & Chen, L. F. Regulation of NF- κB action by reversible acetylation. Novartis. Found. Symp. 259, 208–217 (2004).

    CAS  PubMed  Google Scholar 

  26. Saccani, S., Marazzi, I., Beg, A. A. & Natoli, G. Degradation of promoter-bound p65/RelA is essential for the prompt termination of the NF-κB response. J. Exp. Med. 200, 107–113 (2004).

    Article  CAS  Google Scholar 

  27. Maine, G. N., Mao, X., Komarck, C. M. & Burstein, E. COMMD1 promotes the ubiquitination of NF-κB subunits through a cullin-containing ubiquitin ligase. EMBO J. 26, 436–447 (2007).

    Article  CAS  Google Scholar 

  28. Tanaka, T., Grusby, M. J. & Kaisho, T. PDLIM2-mediated termination of transcription factor NF-κB activation by intranuclear sequestration and degradation of the p65 subunit. Nature Immunol. 8, 584–591 (2007).

    Article  CAS  Google Scholar 

  29. Chen, L. F. & Greene, W. C. Shaping the nuclear action of NF-κB. Nature Rev. Mol. Cell Biol. 5, 392–401 (2004).

    Article  CAS  Google Scholar 

  30. Li, S., Wang, L., Berman, M. A., Zhang, Y. & Dorf, M. E. RNAi screen in mouse astrocytes identifies phosphatases that regulate NF-κB signaling. Mol. Cell 24, 497–509 (2006).

    Article  CAS  Google Scholar 

  31. Yang, J., Fan, G. H., Wadzinski, B. E., Sakurai, H. & Richmond, A. Protein phosphatase 2A interacts with and directly dephosphorylates RelA. J. Biol. Chem. 276, 47828–47833 (2001).

    Article  CAS  Google Scholar 

  32. Li, H. Y. et al. Deactivation of the kinase IKK by CUEDC2 through recruitment of the phosphatase PP1. Nature Immunol. 9, 533–541 (2008).

    Article  CAS  Google Scholar 

  33. Prajapati, S., Verma, U., Yamamoto, Y., Kwak, Y. T. & Gaynor, R. B. Protein phosphatase 2Cβ association with the IκB kinase complex is involved in regulating NF-κB activity. J. Biol. Chem. 279, 1739–1746 (2004).

    Article  CAS  Google Scholar 

  34. Kray, A. E. et al. Positive regulation of IκB kinase signaling by protein Ser/Thr phosphatase 2A. J. Biol. Chem. 280, 35974–35982 (2005).

    Article  CAS  Google Scholar 

  35. Singh, S. & Aggarwal, B. B. Protein-tyrosine phosphatase inhibitors block tumor necrosis factor-dependent activation of the nuclear transcription factor NF-κ B. J. Biol. Chem. 270, 10631–10639 (1995).

    Article  CAS  Google Scholar 

  36. Sun, S. C., Maggirwar, S. B. & Harhaj, E. Activation of NF-κB by phosphatase inhibitors involves the phosphorylation of IκBα at phosphatase 2A-sensitive sites. J. Biol. Chem. 270, 18347–18351 (1995).

    Article  CAS  Google Scholar 

  37. Schito, M. L., Demidov, O. N., Saito, S., Ashwell, J. D. & Appella, E. Wip1 phosphatase-deficient mice exhibit defective T cell maturation due to sustained p53 activation. J. Immunol. 176, 4818–4825 (2006).

    Article  CAS  Google Scholar 

  38. Dey, A., Wong, E. T., Bist, P., Tergaonkar, V. & Lane, D. P. Nutlin-3 inhibits the NF-κB pathway in a p53-dependent manner: implications in lung cancer therapy. Cell Cycle 6, 2178–2185 (2007).

    Article  CAS  Google Scholar 

  39. Tergaonkar, V., Correa, R. G., Ikawa, M. & Verma, I. M. Distinct roles of IκB proteins in regulating constitutive NF-κB activity. Nature Cell Biol. 7, 921–923 (2005).

    Article  CAS  Google Scholar 

  40. Ghosh, S. et al. Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-κB activation and cell survival. Cancer Cell 10, 215–226 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the Agency for Science Technology and Research (A*star) for funding and support. We are grateful to David Lane for the use of his laboratory resources during the course of this work. We acknowledge the help of Walter Blackstock and Jayantha Gunaratne for analysing the phosho peptides by mass spectrometry. We thank G. Natoli for the CHIP protocol and Minami Y for the WIP1 antibody.

Author information

Authors and Affiliations

Authors

Contributions

J.C., V.T., D.B. and S.B. conceived the project and planned experiments and analysis; J.C., S.S., M.H., E.T.W., V.T. and H.T. performed all the biochemical and gene expression analyses; C.C.F. helped with the genome scale screening; E.L.C. provided patient samples; S.B., M.K.D. analysed the sepsis samples; S.B., M.K.D. and A.H. performed the endotoxin experiments on the mice and all related gene expression experiments; V.T. oversaw the project and in consultation with D.B. wrote the manuscript.

Corresponding author

Correspondence to Vinay Tergaonkar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 746 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chew, J., Biswas, S., Shreeram, S. et al. WIP1 phosphatase is a negative regulator of NF-κB signalling. Nat Cell Biol 11, 659–666 (2009). https://doi.org/10.1038/ncb1873

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1873

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing