Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Production of offspring from a germline stem cell line derived from neonatal ovaries

Abstract

The idea that females of most mammalian species have lost the capacity for oocyte production at birth1,2,3,4,5 has been challenged recently by the finding that juvenile and adult mouse ovaries possess mitotically active germ cells6. However, the existence of female germline stem cells (FGSCs) in postnatal mammalian ovaries still remains a controversial issue among reproductive biologists and stem cell researchers6,7,8,9,10. We have now established a neonatal mouse FGSC line, with normal karyotype and high telomerase activity, by immunomagnetic isolation and culture for more than 15 months. FGSCs from adult mice were isolated and cultured for more than 6 months. These FGSCs were infected with GFP virus and transplanted into ovaries of infertile mice. Transplanted cells underwent oogenesis and the mice produced offspring that had the GFP transgene. These findings contribute to basic research into oogenesis and stem cell self-renewal and open up new possibilities for use of FGSCs in biotechnology and medicine.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Establishment of nFGSC or aFGSC culture.
Figure 2: Isolation and culture of aFGSCs.
Figure 3: Characteristics of the nFGSC line.
Figure 4: FGSC transplantation into recipient mice.
Figure 5: GFP offspring generated from the transplantation of nFGSC line or aFGSCs.

References

  1. 1

    Zuckerman, S. The number of oocytes in the mature ovary. Recent Prog. Horm. Res. 6, 63–108 (1951).

    Google Scholar 

  2. 2

    Borum, K. Oogenesis in the mouse. A study of meiotic prophase. Exp. Cell Res. 24, 495–507 (1961).

    CAS  Article  Google Scholar 

  3. 3

    Peters, H. Migration of gonocytes into the mammalian gonad and their differentiation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 259, 91–101 (1970).

    CAS  Article  Google Scholar 

  4. 4

    McLaren, A. Meiosis and differentiation of mouse germ cells. Symp. Soc. Exp. Biol. 38, 7–23 (1984).

    CAS  PubMed  Google Scholar 

  5. 5

    Anderson, L. D. & Hirshfield, A. N. An overview of follicular development in the ovary: from embryo to the fertilized ovum in vitro. Md. Med. J. 41, 614–620 (1992).

    CAS  PubMed  Google Scholar 

  6. 6

    Johnson, J., Canning, J., Kaneko, T., Pru, J. K. & Tilly, J. L. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428, 145–150 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Eggan, k., Jurga, S., Gosden, R., Min, I. M. & Wagers, A. J. Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature 441, 1109–1114 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Telfer, E. E. et al. On regenerating the ovary and generating controversy. Cell 122, 821–822 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Honda, A. et al. Isolation, characterization, and in vitro and in vivo differentiation of putative thecal stem cells. Proc. Natl Acad. Sci. USA 101, 16489–16494 (2007).

    Google Scholar 

  10. 10

    Gosden, R. G. Germline stem cells in the postnatal ovary: is the ovary more like a testis? Hum. Reprod. Update 10, 193–195 (2004).

    Article  Google Scholar 

  11. 11

    Johnson J. J. et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122, 303–315 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Pepling, M. E., Wilhelm, J. E., O'Hara, A. L., Gephardt, G. W. & Spradling, A. C. Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. Proc. Natl Acad. Sci. U S A. 104, 187–192 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Fujiwara, Y. et al. Isolation of a DEAD-family protein gene that encodes a murine homology of Drosophila vasa and its specific expression in germ cell lineage. Proc. Natl Acad. Sci. USA 91, 12258–12262 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Noce, T., Okamoto-Ito, S. & Tsunekawa, N. Vasa homolog genes in mammalian germ cell development. Cell Struct. Funct. 26, 131–136 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Feng, L. et al. Generation and in vitro differentiation of a spermatogonial cell line. Science 297, 392–395 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Ruggiu, M. et al. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 389, 73–77 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Scholer, H. R., Ruppert, S., Suzuki, N., Chowdhury, K. & Gruss, P. New type of POU domain in germ line-specific protein Oct-4. Nature 344, 435–439 (1990).

    CAS  Article  Google Scholar 

  18. 18

    Ohinata, Y. et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207–213 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Tanaka, S. S., Yamaguchi, Y. L., Tsoi, B., Lickert, H. & Tam, P. P. IFITM/Mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion. Dev. Cell. 9, 745–756 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Lange, U. C., Saitou, M., Western, P. S., Barton, S. C. & Surani, M. A. The Fragilis interferon-inducible gene family of transmembrane proteins is associated with germ cell specification in mice. BMC Dev. Bio. 3, 1 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Bortvin, A., Goodheart, M., Liao, M. & Page, D. C. Dppa3 / Pgc7 / stella is a maternal factor and is not required for germ cell specification in mice. BMC Dev. Bio. 4, 2 (2004).

    Article  Google Scholar 

  22. 22

    Hu, B. & Colletti, L. M. Stem cell factor and c-kit are involved in hepatic recovery after acetaminophen-induced liver injury in mice. Am J. Physiol Gastrointest. Liver Physiol. 295, 45–53 (2008).

    Article  Google Scholar 

  23. 23

    Joshi, S., Davies, H., Sims, L. P., Levy, S. E. & Dean J. Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor. BMC Dev. Biol. 7, 67 (2007).

    Article  Google Scholar 

  24. 24

    Masui, S. et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biol. 9, 625–635 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Xu, J., Sylvester, R., Tighe, A P., Chen, S. & Gudas, L. J. Transcriptional activation of the suppressor of cytokine signaling-3 (SOCS-3) gene via STAT3 is increased in F9 REX1 (ZFP-42) knockout teratocarcinoma stem cells relative to wild-type cells. J. Mol. Biol. 377, 28–46 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Yuan, L. et al. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 296, 1115–1118 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Ravindranath, N., Dalal, R., Solomon, B., Djakiew, D. & Dym, M. Loss of telomerase activity during male germ cell differentiation. Endocrinology 138, 4026–4029 (1997).

    CAS  Article  Google Scholar 

  29. 29

    Shiromizu, K., Thorgeirsson, S. S. & Mattison, D. R. Effect of cyclophosphamide on oocyte and follicle number in Sprague-Dawley rats, C57BL/6N and DBA/2N mice. Pediatr. Pharmacol. 4, 213–221 (1984).

    CAS  Google Scholar 

  30. 30

    Yang, Z. & Wu, J. Mouse dynein axonemal intermediate chain 2: cloning and expression. DNA Cell Biol. 27, 479–488 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Nagano, M., Avarbock, M. R., Leonida, E. B., Brinster, C. J. & Brinster, R. L. –Culture of mouse spermatogonial stem cells. Tissue Cell 30, 389–397 (1998).

    CAS  Article  Google Scholar 

  32. 32

    Wu, J., Jester, W. F. Jr, Laslett. A. L., Meinhardt, A. & Orth, J. M. Expression of a novel factor, short-type PB-cadherin, in Sertoli cells and spermatogenic stem cells of the neonatal rat testis. J. Endocrinol. 176, 381–391 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Wu, J., Jester, W. F. Jr & Orth, J. M. Short-type PB-cadherin promotes survival of gonocytes and activates JAK–STAT signaling. Dev. Biol. 284, 437–450 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Wu, J. et al. Short-type PB-cadherin promotes self-renewal of spermatogonial stem cells via multiple signaling pathways. Cell Signal. 20, 1052–1060 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Xiong, Z., Laird, P. W. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 25, 2532–2534 (1997).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Il-Hoan Oh for providing the MSCV–PGK–GFP vector used in this study. This work was supported by Key Program of National Natural Scientific Foundation of China (No. 30630012), and sponsored by Shanghai Pujiang Program, China (No. 06PJ14058) and Shanghai Leading Academic Discipline Project (No. B205).

Author information

Affiliations

Authors

Contributions

K.Z. and L.S. isolated and cultured FGSCs, and created the FGSC line; K.Z., Z.Yu, Y.Z. and R.H. characterized the nFGSC line and long-term cultured aFGSCs; Z.Yu, Z.Ya and Q.Y. examined the physiological function of FGSCs and the presence of GFP transgenes; H.L. and K.S. carried out COBRA; L.Z. and J.X. performed identification of FGSCs in ovaries; K.Z. participated in data analysis; J.W. planned and supervised the project, carried out FGSC transplantation, analysed data and wrote the paper.

Corresponding author

Correspondence to Ji Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1160 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zou, K., Yuan, Z., Yang, Z. et al. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol 11, 631–636 (2009). https://doi.org/10.1038/ncb1869

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing