Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Persistent transcription-blocking DNA lesions trigger somatic growth attenuation associated with longevity

Abstract

The accumulation of stochastic DNA damage throughout an organism's lifespan is thought to contribute to ageing. Conversely, ageing seems to be phenotypically reproducible and regulated through genetic pathways such as the insulin-like growth factor-1 (IGF-1) and growth hormone (GH) receptors, which are central mediators of the somatic growth axis. Here we report that persistent DNA damage in primary cells from mice elicits changes in global gene expression similar to those occurring in various organs of naturally aged animals. We show that, as in ageing animals, the expression of IGF-1 receptor and GH receptor is attenuated, resulting in cellular resistance to IGF-1. This cell-autonomous attenuation is specifically induced by persistent lesions leading to stalling of RNA polymerase II in proliferating, quiescent and terminally differentiated cells; it is exacerbated and prolonged in cells from progeroid mice and confers resistance to oxidative stress. Our findings suggest that the accumulation of DNA damage in transcribed genes in most if not all tissues contributes to the ageing-associated shift from growth to somatic maintenance that triggers stress resistance and is thought to promote longevity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shared biological processes after induction of DNA damage in vitro and ageing in vivo.
Figure 2: IGF-1R and GHR are repressed in response to persistent DNA damage, leading to IGF-1 resistance.
Figure 3: Response to UV irradiation induces resistance to oxidative stress.
Figure 4: UV irradiation leads to IGF-1R and GHR attenuation in quiescent and terminally differentiated cells.
Figure 5: Prolonged IGF-1R and GHR repression in cells from NER-deficient progeroid mice.
Figure 6: Attenuation of IGF-1R and GHR expression in response to illudin S but not to oxidative damage and ionizing irradiation.
Figure 7: Repair of persistent CPD lesions alleviates IGF-1R and GHR repression and resistance to oxidative stress.
Figure 8: Stochastic DNA damage resulting from extrinsic and intrinsic sources contributes to cancer and ageing.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

References

  1. Kirkwood, T. B. Understanding the odd science of aging. Cell 120, 437–447 (2005).

    Article  CAS  Google Scholar 

  2. Kirkwood, T. B. & Cremer, T. Cytogerontology since 1881: a reappraisal of August Weismann and a review of modern progress. Hum. Genet. 60, 101–121 (1982).

    Article  CAS  Google Scholar 

  3. Hasty, P., Campisi, J., Hoeijmakers, J., van Steeg, H. & Vijg, J. Aging and genome maintenance: lessons from the mouse? Science 299, 1355–1359 (2003).

    Article  CAS  Google Scholar 

  4. Lombard, D. B. et al. DNA repair, genome stability, and aging. Cell 120, 497–512 (2005).

    Article  CAS  Google Scholar 

  5. Campisi, J. Aging, tumor suppression and cancer: high wire-act! Mech. Ageing Dev. 126, 51–58 (2005).

    Article  CAS  Google Scholar 

  6. Schumacher, B., Garinis, G. A. & Hoeijmakers, J. H. Age to survive: DNA damage and aging. Trends Genet. 24, 77–85 (2008).

    Article  CAS  Google Scholar 

  7. Sedelnikova, O. A. et al. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nature Cell Biol. 6, 168–170 (2004).

    Article  CAS  Google Scholar 

  8. Dolle, M. E. et al. Rapid accumulation of genome rearrangements in liver but not in brain of old mice. Nature Genet. 17, 431–434 (1997).

    Article  CAS  Google Scholar 

  9. Sedelnikova, O. A. et al. Delayed kinetics of DNA double-strand break processing in normal and pathological aging. Aging Cell 7, 89–100 (2008).

    Article  CAS  Google Scholar 

  10. Herndon, L. A. et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808–814 (2002).

    Article  CAS  Google Scholar 

  11. Rea, S. L., Wu, D., Cypser, J. R., Vaupel, J. W. & Johnson, T. E. A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Genet 37, 894–898 (2005).

    Article  CAS  Google Scholar 

  12. Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449–460 (2005).

    Article  CAS  Google Scholar 

  13. Gems, D. Longevity and ageing in parasitic and free-living nematodes. Biogerontology 1, 289–307 (2000).

    Article  CAS  Google Scholar 

  14. Guarente, L. & Kenyon, C. Genetic pathways that regulate ageing in model organisms. Nature 408, 255–262 (2000).

    Article  CAS  Google Scholar 

  15. Giannakou, M. E. & Partridge, L. Role of insulin-like signalling in Drosophila lifespan. Trends Biochem. Sci. 32, 180–188 (2007).

    Article  CAS  Google Scholar 

  16. Carter, C. S., Ramsey, M. M. & Sonntag, W. E. A critical analysis of the role of growth hormone and IGF-1 in aging and lifespan. Trends Genet. 18, 295–301 (2002).

    Article  CAS  Google Scholar 

  17. Holzenberger, M. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182–187 (2003).

    Article  CAS  Google Scholar 

  18. Kurosu, H. et al. Suppression of aging in mice by the hormone Klotho. Science 309, 1829–1833 (2005).

    Article  CAS  Google Scholar 

  19. Bonkowski, M. S. et al. Long-lived growth hormone receptor knockout mice show a delay in age-related changes of body composition and bone characteristics. J. Gerontol. A Biol. Sci. Med. Sci. 61, 562–567 (2006).

    Google Scholar 

  20. Bartke, A. & Brown-Borg, H. Life extension in the dwarf mouse. Curr. Top. Dev. Biol. 63, 189–225 (2004).

    Article  CAS  Google Scholar 

  21. Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006).

    Article  CAS  Google Scholar 

  22. Ramirez, C. L., Cadinanos, J., Varela, I., Freije, J. M. & Lopez-Otin, C. Human progeroid syndromes, aging and cancer: new genetic and epigenetic insights into old questions. Cell Mol. Life Sci. 64, 155–170 (2007).

    Article  CAS  Google Scholar 

  23. Garinis, G. A., van der Horst, G. T., Vijg, J. & Hoeijmakers, J. H. DNA damage and ageing: new-age ideas for an age-old problem. Nature Cell Biol. 10, 1241–1247 (2008).

    Article  CAS  Google Scholar 

  24. Lehmann, A. R. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 85, 1101–1111 (2003).

    Article  CAS  Google Scholar 

  25. van der Pluijm, I. et al. Impaired genome maintenance suppresses the growth hormone–insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLoS Biol. 5, e2 (2006).

    Article  Google Scholar 

  26. Masternak, M. M. et al. Effects of caloric restriction on insulin pathway gene expression in the skeletal muscle and liver of normal and long-lived GHR-KO mice. Exp. Gerontol. 40, 679–684 (2005).

    Article  CAS  Google Scholar 

  27. van Hoffen, A., Venema, J., Meschini, R., van Zeeland, A. A. & Mullenders, L. H. Transcription-coupled repair removes both cyclobutane pyrimidine dimers and 6-4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group C fibroblasts. EMBO J. 14, 360–367 (1995).

    Article  CAS  Google Scholar 

  28. Tsuchiya, T. et al. Additive regulation of hepatic gene expression by dwarfism and caloric restriction. Physiol. Genomics 17, 307–315 (2004).

    Article  CAS  Google Scholar 

  29. Rowland, J. E. et al. In vivo analysis of growth hormone receptor signaling domains and their associated transcripts. Mol. Cell. Biol. 25, 66–77 (2005).

    Article  CAS  Google Scholar 

  30. Boylston, W. H. et al. Altered cholesterologenic and lipogenic transcriptional profile in livers of aging Snell dwarf (Pit1dw/dwJ) mice. Aging Cell 3, 283–296 (2004).

    Article  CAS  Google Scholar 

  31. Schumacher, B. et al. Delayed and accelerated aging share common longevity assurance mechanisms. PLoS Genet 4, e1000161 (2008).

    Article  Google Scholar 

  32. Liang, H. et al. Genetic mouse models of extended lifespan. Exp. Gerontol. 38, 1353–1364 (2003).

    Article  CAS  Google Scholar 

  33. Verma, A. K., Wheeler, D. L., Aziz, M. H. & Manoharan, H. Protein kinase Cepsilon and development of squamous cell carcinoma, the nonmelanoma human skin cancer. Mol. Carcinog. 45, 381–388 (2006).

    Article  CAS  Google Scholar 

  34. Stachelscheid, H. et al. Epidermal insulin/IGF-1 signalling control interfollicular morphogenesis and proliferative potential through Rac activation. EMBO J. 27, 2091–2101 (2008).

    Article  CAS  Google Scholar 

  35. Piwien-Pilipuk, G., Huo, J. S. & Schwartz, J. Growth hormone signal transduction. J. Pediatr. Endocrinol. Metab. 15, 771–786 (2002).

    Article  CAS  Google Scholar 

  36. Partridge, L. & Gems, D. Mechanisms of ageing: public or private? Nature Rev. Genet. 3, 165–175 (2002).

    Article  CAS  Google Scholar 

  37. Salmon, A. B. et al. Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am. J. Physiol. Endocrinol. Metab. 289, E23–E29 (2005).

    Article  CAS  Google Scholar 

  38. O'Driscoll, M., Ruiz-Perez, V. L., Woods, C. G., Jeggo, P. A. & Goodship, J. A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nature Genet. 33, 497–501 (2003).

    Article  CAS  Google Scholar 

  39. Nunez, F., Chipchase, M. D., Clarke, A. R. & Melton, D. W. Nucleotide excision repair gene (ERCC1) deficiency causes G2 arrest in hepatocytes and a reduction in liver binucleation: the role of p53 and p21. FASEB J. 14, 1073–1082 (2000).

    Article  CAS  Google Scholar 

  40. Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15, 2177–2196 (2001).

    Article  CAS  Google Scholar 

  41. Dizdaroglu, M. Base-excision repair of oxidative DNA damage by DNA glycosylases. Mutat. Res. 591, 45–59 (2005).

    Article  CAS  Google Scholar 

  42. Dianov, G. L. & Parsons, J. L. Co-ordination of DNA single strand break repair. DNA Repair 6, 454–460 (2007).

    Article  CAS  Google Scholar 

  43. DiBiase, S. J. et al. DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Cancer Res. 60, 1245–1253 (2000).

    CAS  PubMed  Google Scholar 

  44. Essers, J. et al. Dynamics of relative chromosome position during the cell cycle. Mol. Biol. Cell 16, 769–775 (2005).

    Article  CAS  Google Scholar 

  45. Garinis, G. A. et al. Transcriptome analysis reveals cyclobutane pyrimidine dimers as a major source of UV-induced DNA breaks. EMBO J. 24, 3952–3962 (2005).

    Article  CAS  Google Scholar 

  46. You, Y. H. et al. Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells. J. Biol. Chem. 276, 44688–44694 (2001).

    Article  CAS  Google Scholar 

  47. Mellon, I., Spivak, G. & Hanawalt, P. C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51, 241–249 (1987).

    Article  CAS  Google Scholar 

  48. Bohr, V. A., Smith, C. A., Okumoto, D. S. & Hanawalt, P. C. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40, 359–369 (1985).

    Article  CAS  Google Scholar 

  49. Riou, L. et al. Differential repair of the two major UV-induced photolesions in trichothiodystrophy fibroblasts. Cancer Res. 64, 889–894 (2004).

    Article  CAS  Google Scholar 

  50. Jaspers, N. G. et al. Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways. DNA Repair 1, 1027–1038 (2002).

    Article  CAS  Google Scholar 

  51. Fousteri, M., Vermeulen, W., van Zeeland, A. A. & Mullenders, L. H. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol. Cell 23, 471–482 (2006).

    Article  CAS  Google Scholar 

  52. Jans, J. et al. Powerful skin cancer protection by a CPD-photolyase transgene. Curr. Biol. 15, 105–115 (2005).

    Article  CAS  Google Scholar 

  53. Dardevet, D., Sornet, C., Attaix, D., Baracos, V. E. & Grizard, J. Insulin-like growth factor-1 and insulin resistance in skeletal muscles of adult and old rats. Endocrinology 134, 1475–1484 (1994).

    Article  CAS  Google Scholar 

  54. Rivera, E. J. et al. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease: link to brain reductions in acetylcholine. J. Alzheimers Dis. 8, 247–268 (2005).

    Article  CAS  Google Scholar 

  55. Li, M., Li, C. & Parkhouse, W. S. Age-related differences in the des IGF-I-mediated activation of Akt-1 and p70 S6K in mouse skeletal muscle. Mech. Ageing Dev. 124, 771–778 (2003).

    Article  CAS  Google Scholar 

  56. Charlet-Berguerand, N. et al. RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. EMBO J. 25, 5481–5491 (2006).

    Article  CAS  Google Scholar 

  57. Brooks, P. J. The case for 8,5′-cyclopurine-2′-deoxynucleosides as endogenous DNA lesions that cause neurodegeneration in xeroderma pigmentosum. Neuroscience 145, 1407–1417 (2007).

    Article  CAS  Google Scholar 

  58. Wijnhoven, S. W. et al. Accelerated aging pathology in ad libitum fed Xpd(TTD) mice is accompanied by features suggestive of caloric restriction. DNA Repair 4, 1314–1324 (2005).

    Article  CAS  Google Scholar 

  59. Paci, A. et al. Pharmacokinetics, metabolism, and routes of excretion of intravenous irofulven in patients with advanced solid tumors. Drug. Metab. Dispos. 34, 1918–1926 (2006).

    Article  CAS  Google Scholar 

  60. Hartog, H., Wesseling, J., Boezen, H. M. & van der Graaf, W. T. The insulin-like growth factor 1 receptor in cancer: old focus, new future. Eur. J. Cancer 43, 1895–1904 (2007).

    CAS  Google Scholar 

  61. Vermeulen, C. J. & Loeschcke, V. Longevity and the stress response in Drosophila. Exp. Gerontol. 42, 153–159 (2007).

    Article  CAS  Google Scholar 

  62. Daitoku, H. & Fukamizu, A. FOXO transcription factors in the regulatory networks of longevity. J. Biochem. 141, 769–774 (2007).

    Article  CAS  Google Scholar 

  63. Doonan, R. et al. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 22, 3236–3241 (2008).

    Article  CAS  Google Scholar 

  64. Murakami, S. Stress resistance in long-lived mouse models. Exp. Gerontol. 41, 1014–1019 (2006).

    Article  CAS  Google Scholar 

  65. Gems, D. & Partridge, L. Stress-response hormesis and aging: “that which does not kill us makes us stronger”. Cell Metab. 7, 200–203 (2008).

    Article  CAS  Google Scholar 

  66. Nouspikel, T. & Hanawalt, P. C. DNA repair in terminally differentiated cells. DNA Repair 1, 59–75 (2002).

    Article  CAS  Google Scholar 

  67. Ljungman, M. & Lane, D. P. Transcription — guarding the genome by sensing DNA damage. Nature Rev. Cancer 4, 727–737 (2004).

    Article  CAS  Google Scholar 

  68. Kirkwood, T. Repair and its Evolution: Survival Versus Reproduction 165–189 (Blackwell, 1981).

    Google Scholar 

  69. Teuling, E. et al. Motor neuron disease-associated mutant vesicle-associated membrane protein-associated protein (VAP) B recruits wild-type VAPs into endoplasmic reticulum-derived tubular aggregates. J. Neurosci. 27, 9801–9815 (2007).

    Article  CAS  Google Scholar 

  70. Ford, J. M. & Hanawalt, P. C. Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J. Biol. Chem. 272, 28073–28080 (1997).

    Article  CAS  Google Scholar 

  71. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Christel Kockx, Zeliha Ozgur and Anja Raams for technical assistance, Casper Hoogenraad for neuron cultures, and Anton Gartner and Francis Barr for comments on the manuscript. This research was supported by the Netherlands Organization for Scientific Research (NWO) and the Netherlands Genomics Initiative (NGI; NGI/NWO 05040202), SenterNovem IOP-Genomics (IGE03009), the NIH (1PO1 AG17242), the National Institute of Environmental Health Sciences (NIEHS; 1UO1 ES011044), the EC (QRTL-1999-02002) and the Dutch Cancer Society (EUR 99-2004). G.G. acknowledges support from the Cancer Genomics Centre and B.S. from EMBO long-term, Marie Curie Intra-European fellowships,Veni grant of the NWO and the Deutsche Forschungsgemeinschaft (CECAD and SFB829).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: BS. Performed the experiments and analysed the data: BS, GAG, LMU, HS, MF. Contributed reagents/materials/analysis tools: WvI, TMB, HvS, LHFM, GvdH, JCB, CMN. Wrote the paper: BS, JHJH, GAG.

Corresponding author

Correspondence to Björn Schumacher.

Ethics declarations

Competing interests

J.H.J.H. is the Chief Scientific Officer of DNage/Pharming.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garinis, G., Uittenboogaard, L., Stachelscheid, H. et al. Persistent transcription-blocking DNA lesions trigger somatic growth attenuation associated with longevity. Nat Cell Biol 11, 604–615 (2009). https://doi.org/10.1038/ncb1866

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1866

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing