Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction

Abstract

Impaired ribosome biogenesis is attributed to nucleolar disruption and diffusion of a subset of 60S ribosomal proteins, particularly ribosomal protein (rp)L11, into the nucleoplasm, where they inhibit MDM2, leading to p53 induction and cell-cycle arrest1,2,3,4. Previously, we demonstrated that deletion of the 40S rpS6 gene in mouse liver prevents hepatocytes from re-entering the cell cycle after partial hepatectomy5. Here, we show that this response leads to an increase in p53, which is recapitulated in culture by rpS6-siRNA treatment and rescued by the simultaneous depletion of p53. However, disruption of biogenesis of 40S ribosomes had no effect on nucleolar integrity, although p53 induction was mediated by rpL11, leading to the finding that the cell selectively upregulates the translation of mRNAs with a polypyrimidine tract at their 5′-transcriptional start site (5′-TOP mRNAs), including that encoding rpL11, on impairment of 40S ribosome biogenesis. Increased 5′-TOP mRNA translation takes place despite continued 60S ribosome biogenesis and a decrease in global translation. Thus, in proliferative human disorders involving hypomorphic mutations in 40S ribosomal proteins6,7, specific targeting of rpL11 upregulation would spare other stress pathways that mediate the potential benefits of p53 induction8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depletion of rpS6 leads to p53-dependent cell-cycle arrest.
Figure 2: Depletion of rpS6 does not result in nucleolar disruption.
Figure 3: Upregulation of p53 by depletion of ribosomal proteins is mediated by rpL11.
Figure 4: Depletion of 40S ribosomal proteins results in translational upregulation of the rpL11 mRNA.
Figure 5: Depletion of rpS6 upregulates 5′-TOP mediated translation.

Similar content being viewed by others

References

  1. Lohrum, M. A., Ludwig, R. L., Kubbutat, M. H., Hanlon, M. & Vousden, K. H. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3, 577–587 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Dai, M. S. & Lu, H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J. Biol. Chem. 279, 44475–44482 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Dai, M. S. et al. Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol. Cell. Biol. 24, 7654–7668 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yuan, X. et al. Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53-mediated apoptosis. Mol. Cell 19, 77–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Volarevic, S. et al. Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science 288, 2045–2047 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Draptchinskaia, N. et al. The gene encoding ribosomal protein S19 is mutated in Diamond–Blackfan anaemia. Nature Genet. 21, 169–175 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Ebert, B. L. et al. Identification of RPS14 as a 5q syndrome gene by RNA interference screen. Nature 451, 335–339 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vousden, K. H. & Lane, D. P. p53 in health and disease. Nature Rev. Mol. Cell Biol. 8, 275–283 (2007).

    Article  CAS  Google Scholar 

  9. Sulic, S. et al. Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response. Genes Dev. 19, 3070–3082 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Panic, L. et al. Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Mol. Cell. Biol. 26, 8880–8891 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McGowan, K. A. et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nature Genet. 40, 963–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Beuvink, I. et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 120, 747–759 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Rubbi, C. P. & Milner, J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 22, 6068–6077 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pogacic, V., Dragon, F. & Filipowicz, W. Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins NHP2 and NOP10. Mol. Cell. Biol. 20, 9028–9040 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aloni, R., Peleg, D. & Meyuhas, O. Selective translational control and nonspecific posttranscriptional regulation of ribosomal protein gene expression during development and regeneration of rat liver. Mol. Cell. Biol. 12, 2203–2212 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meyuhas, O., Avni, D. & Shama, S. in Translational Control (eds Hershey, J. W. B., Mathews, M. B. & Sonenberg, N.) 363–388 (Cold Spring Harbor Laboratory Press, 1996).

    Google Scholar 

  17. Meyuhas, O. Synthesis of the translational apparatus is regulated at the translational level. Eur. J. Biochem. 267, 6321–6330 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Fumagalli, S. & Thomas, G. in Translational Control of Gene Expression (eds Sonenberg, N., Hershey, J. W. B. & Mathews, M.) 695–717 (Cold Spring Harbor Laboratory Press, 2000).

    Google Scholar 

  19. Levy, S., Avni, D., Hariharan, N., Perry, R. P. & Meyuhas, O. Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc. Natl Acad. Sci. USA 88, 3319–3323 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jefferies, H. B. J. et al. Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J. 12, 3693–3704 (1997).

    Article  Google Scholar 

  21. Gazda, H. T. et al. Ribosomal protein S24 gene is mutated in Diamond–Blackfan anemia. Am. J. Hum. Genet. 79, 1110–1118 (2006).

    Article  CAS  Google Scholar 

  22. Jones, N. C. et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nature Med. 14, 125–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. MacInnes, A. W., Amsterdam, A., Whittaker, C. A., Hopkins, N. & Lees, J. A. Loss of p53 synthesis in zebrafish tumors with ribosomal protein gene mutations. Proc. Natl Acad. Sci. USA 105, 10408–10413 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crosio, C., Boyl, P. P., Loreni, F., Pierandrei-Amaldi, P. & Amaldi, F. La protein has a positive effect on the translation of TOP mRNAs in vivo. Nucleic Acids Res. 28, 2927–2934 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schwartz, E. I., Intine, R. V. & Maraia, R. J. CK2 is responsible for phosphorylation of human La protein serine-366 and can modulate rpL37 5′-terminal oligopyrimidine mRNA metabolism. Mol. Cell. Biol. 24, 9580–9591 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, C. A. & Okayama, H. Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques 6, 632–638 (1988).

    CAS  PubMed  Google Scholar 

  27. Blindenbacher, A. et al. Interleukin 6 is important for survival after partial hepatectomy in mice. Hepatology 38, 674–682 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Iordanov, M. S. et al. Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the α-sarcin/ricin loop in the 28S rRNA. Mol. Cell. Biol. 17, 3373–3381 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pende, M. et al. S6K1−/−/S6K2−/− mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol. Cell. Biol. 24, 3112–3124 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Young, A. R. et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 119, 3888–3900 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to P. D. Plas, A. Selvaraj and P. B. Dennis for their critical reading of the manuscript, as well as members of the laboratory for numerous discussions. We are also thankful to K. Vousden for the L11 polyclonal antibody. Finally we thank G. Doerman and M. Daston for computer graphics and the editing of the manuscript, respectively. A.D.C. was supported by fellowship from the Boehringer Ingelheim Fund. These studies were supported by the Mouse Models in Human Cancer Consortium grant U01 CA-84292 to P.P.P. and G.T., and G.T. is also supported by the Gladys and John Strauss Chair in Cancer Research and start-up funds from the University of Cincinnati.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefano Fumagalli or George Thomas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1435 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fumagalli, S., Di Cara, A., Neb-Gulati, A. et al. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol 11, 501–508 (2009). https://doi.org/10.1038/ncb1858

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1858

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing