Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A mechanism for chromosome segregation sensing by the NoCut checkpoint

Abstract

In Saccharomyces cerevisiae1 and HeLa cells2, the NoCut checkpoint, which involves the chromosome passenger kinase Aurora B, delays the completion of cytokinesis in response to anaphase defects. However, how NoCut monitors anaphase progression has not been clear. Here, we show that retention of chromatin in the plane of cleavage is sufficient to trigger NoCut, provided that Aurora/Ipl1 localizes properly to the spindle midzone, and that the ADA histone acetyltransferase complex is intact. Furthermore, forcing Aurora onto chromatin was sufficient to activate NoCut independently of anaphase defects. These findings provide the first evidence that NoCut is triggered by the interaction of acetylated chromatin with the passenger complex at the spindle midzone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defects in chromosome segregation trigger NoCut-dependent inhibition of cytokinesis in the absence of midzone damage.
Figure 2: Separase is required for the NoCut response.
Figure 3: FEAR is required for the NoCut response through Ipl1 targeting to spindle microtubules.
Figure 4: The ADA histone acetyltransferase component Ahc1 is required for the NoCut response.
Figure 5: Tethering of Ipl1 to chromosome arms triggers the NoCut response.

Similar content being viewed by others

References

  1. Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125, 85–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Steigemann, P. et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136, 473–484 (2009).

    Article  PubMed  Google Scholar 

  3. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  4. May, K. M. & Hardwick, K. G. The spindle checkpoint. J. Cell Sci. 119, 4139–4142 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Barr, F. A. & Gruneberg, U. Cytokinesis: placing and making the final cut. Cell 131, 847–860 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Eggert, U. S., Mitchison, T. J. & Field, C. M. Animal cytokinesis: from parts list to mechanisms. Annu. Rev. Biochem. 75, 543–566 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Ruchaud, S., Carmena, M. & Earnshaw, W. C. Chromosomal passengers: conducting cell division. Nature Rev. Mol. Cell Biol. 8, 798–812 (2007).

    Article  CAS  Google Scholar 

  8. Vader, G., Medema, R. H. & Lens, S. M. The chromosomal passenger complex: guiding Aurora-B through mitosis. J. Cell Biol. 173, 833–837 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holm, C., Goto, T., Wang, J. C. & Botstein, D. DNA topoisomerase II is required at the time of mitosis in yeast. Cell 41, 553–563 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Melo, J. A., Cohen, J. & Toczyski, D. P. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 15, 2809–2821 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Queralt, E., Lehane, C., Novak, B. & Uhlmann, F. Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast. Cell 125, 719–732 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Stegmeier, F., Visintin, R. & Amon, A. Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108, 207–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Sullivan, M. & Uhlmann, F. A non-proteolytic function of separase links the onset of anaphase to mitotic exit. Nature Cell Biol. 5, 249–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Stegmeier, F. & Amon, A. Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu. Rev. Genet. 38, 203–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Pereira, G. & Schiebel, E. Separase regulates INCENP-Aurora B anaphase spindle function through Cdc14. Science 302, 2120–2124 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Higuchi, T. & Uhlmann, F. Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation. Nature 433, 171–176 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eberharter, A. et al. The ADA complex is a distinct histone acetyltransferase complex in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 6621–6631 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kelly, A. E. et al. Chromosomal enrichment and activation of the aurora B pathway are coupled to spatially regulate spindle assembly. Dev. Cell 12, 31–43 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. King, E. M., Rachidi, N., Morrice, N., Hardwick, K. G. & Stark, M. J. Ipl1p-dependent phosphorylation of Mad3p is required for the spindle checkpoint response to lack of tension at kinetochores. Genes Dev. 21, 1163–1168 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramos, J. L. et al. The TetR family of transcriptional repressors. Microbiol Mol. Biol. Rev. 69, 326–356 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alvaro, D., Lisby, M. & Rothstein, R. Genome-wide analysis of Rad52 foci reveals diverse mechanisms impacting recombination. PLoS Genet. 3, e228 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yanagida, M. Fission yeast cut mutations revisited: control of anaphase. Trends Cell Biol. 8, 144–149 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Baxter, J. & Diffley, J. F. Topoisomerase II inactivation prevents the completion of DNA replication in budding yeast. Mol. Cell 30, 790–802 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Christianson, T. W., Sikorski, R. S., Dante, M., Shero, J. H. & Hieter, P. Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119–122 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Kusch, J., Meyer, A., Snyder, M. P. & Barral, Y. Microtubule capture by the cleavage apparatus is required for proper spindle positioning in yeast. Genes Dev. 16, 1627–1639 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Patrick Steigemann, Daniel Gerlich, Patrick Meraldi, Hemmo Meyer and all members of the Barral lab for fruitful discussions and critical reading of the manuscript. Thanks to Dominik Theler, Trinidad Sanmartin and Joelle Sasse for technical assistance, Orna Cohen-Fix for sharing reagents, and the ETH Light Microscopy Center for their invaluable support. This work was supported by an SNF Grant to Y.B. (2-77542-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Barral.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 496 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza, M., Norden, C., Durrer, K. et al. A mechanism for chromosome segregation sensing by the NoCut checkpoint. Nat Cell Biol 11, 477–483 (2009). https://doi.org/10.1038/ncb1855

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1855

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing