Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB

Abstract

Skp2 is an F-box protein that forms the SCF complex with Skp1 and Cullin-1 to constitute an E3 ligase for ubiquitylation. Ubiquitylation and degradation of the p27 are critical for Skp2-mediated entry to the cell cycle, and overexpression and cytosolic accumulation of Skp2 have been clearly associated with tumorigenesis, although the functional significance of the latter is still unknown. Here we show that Akt/protein kinase B (PKB) interacts with and directly phosphorylates Skp2. We find that Skp2 phosphorylation by Akt triggers SCF complex formation and E3 ligase activity. A phosphorylation-defective Skp2 mutant is drastically impaired in its ability to promote cell proliferation and tumorigenesis. Furthermore, we show that Akt-mediated phosphorylation triggers 14-3-3β-dependent Skp2 relocalization to the cytosol, and we attribute a specific role to cytosolic Skp2 in the positive regulation of cell migration. Finally, we demonstrate that high levels of activation of Akt correlate with the cytosolic accumulation of Skp2 in human cancer specimens. Our results therefore define a novel proto-oncogenic Akt/PKB-dependent signalling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Skp2 interacts with Akt.
Figure 2: Akt/PKB phosphorylates Skp2 at S72 in vitro and in vivo.
Figure 3: Phosphorylation of Skp2 is required for Skp2 E3 ligase activity and function.
Figure 4: Akt-mediated Skp2 phosphorylation regulates SCF complex formation.
Figure 5: Skp2 phosphorylation by Akt regulates the cytosolic localization of Skp2.
Figure 6: 14-3-3β interacts with Skp2 and is essential for Akt-mediated Skp2 relocalization in the cytosol.
Figure 7: Cytosolic Skp2 positively regulates cell migration.
Figure 8: Cytosolic Skp2 correlates with activation of the Akt kinase, PTEN loss, and metastasis in human cancer specimens.

Similar content being viewed by others

References

  1. Bloom, J. & Pagano, M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin. Cancer Biol. 13, 41–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Nakayama, K. I. & Nakayama, K. Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin. Cell Dev. Biol. 16, 323–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Amati, B. & Vlach, J. Kip1 meets SKP2: new links in cell-cycle control. Nature Cell Biol. 1, E91–E93 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Tsvetkov, L. M., Yeh, K. H., Lee, S. J., Sun, H. & Zhang, H. p27Kip1 ubiquitination and degradation is regulated by the SCFSkp2 complex through phosphorylated Thr187 in p27. Curr. Biol. 9, 661–664 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Kossatz, U. et al. Skp2-dependent degradation of p27kip1 is essential for cell cycle progression. Genes Dev. 18, 2602–2607 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sutterlüty, H. et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol. 1, 207–214 (1999).

    Article  PubMed  Google Scholar 

  8. Nakayama, K. et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27Kip1, polyploidy and centrosome overduplication. EMBO J. 19, 2069–2081 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakayama, K. et al. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev. Cell 6, 661–672 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Gstaiger, M. et al. Skp2 is oncogenic and overexpressed in human cancers. Proc. Natl Acad. Sci. USA 98, 5043–5048 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Latres, E. et al. Role of the F-box protein Skp2 in lymphomagenesis. Proc. Natl Acad. Sci. USA 98, 2515–2520 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shim, E. H. et al. Expression of the F-box protein SKP2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate. Cancer Res. 63, 1583–1588 (2003).

    CAS  PubMed  Google Scholar 

  13. Zhang, H., Kobayashi, R., Galaktionov, K. & Beach, D. p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell 82, 915–925 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Bilodeau, M. et al. Skp2 induction and phosphorylation is associated with the late G1 phase of proliferating rat hepatocytes. FEBS Lett. 452, 247–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Dan, H. C. et al. Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J. Biol. Chem. 277, 35364–35370 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol. 4, 648–657 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10, 151–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Potter, C. J., Pedraza, L. G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nature Cell Biol. 4, 658–665 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Yaffe, M. B. et al. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nature Biotechnol. 19, 348–353 (2001).

    Article  CAS  Google Scholar 

  20. Posewitz, M. C. & Tempst, P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal. Chem. 71, 2883–2892 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Malek, N. P. et al. A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature 413, 323–327 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Drobnjak, M. et al. Altered expression of p27 and Skp2 proteins in prostate cancer of African-American patients. Clin. Cancer Res. 9, 2613–2619 (2003).

    CAS  PubMed  Google Scholar 

  23. Li, Q., Murphy, M., Ross, J., Sheehan, C. & Carlson, J. A. Skp2 and p27kip1 expression in melanocytic nevi and melanoma: an inverse relationship. J. Cutan. Pathol. 31, 633–642 (2004).

    Article  PubMed  Google Scholar 

  24. Lim, M. S. et al. Expression of Skp2, a p27Kip1 ubiquitin ligase, in malignant lymphoma: correlation with p27Kip1 and proliferation index. Blood 100, 2950–2956 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Radke, S., Pirkmaier, A. & Germain, D. Differential expression of the F-box proteins Skp2 and Skp2B in breast cancer. Oncogene 24, 3448–3458 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Cantley, L. C. & Neel, B. G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl Acad. Sci. USA 96, 4240–4245 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Di Cristofano, A. & Pandolfi, P. P. The multiple roles of PTEN in tumor suppression. Cell 100, 387–390 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Brazil, D. P., Park, J. & Hemmings, B. A. PKB binding proteins. Getting in on the Akt. Cell 111, 293–303 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Gao, D. et al. Phosphorylation by Akt1 promotes Skp2 cytoplasmic localization and impairs APC/Cdh1-mediated Skp2 destruction. Nature Cell Biol. 11, doi: 10.1038/ncb1847 (2009).

  31. Hermeking, H. The 14-3-3 cancer connection. Nature Rev. Cancer 3, 931–943 (2003).

    Article  CAS  Google Scholar 

  32. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Brunet, A. et al. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell Biol. 156, 817–828 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fujita, N., Sato, S., Katayama, K. & Tsuruo, T. Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J. Biol. Chem. 277, 28706–28713 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Sekimoto, T., Fukumoto, M. & Yoneda, Y. 14-3-3 suppresses the nuclear localization of threonine 157-phosphorylated p27Kip1. EMBO J. 23, 1934–1942 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mamillapalli, R. et al. PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27KIP1 through the ubiquitin E3 ligase SCFSKP2. Curr Biol 11, 263–267 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Rodier, G., Coulombe, P., Tanguay, P. L., Boutonnet, C. & Meloche, S. Phosphorylation of Skp2 regulated by CDK2 and Cdc14B protects it from degradation by APCCdh1 in G1 phase. EMBO J. 27, 679–691 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng, N. et al. Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Lin, H. K., Bergmann, S. & Pandolfi, P. P. Cytoplasmic PML function in TGF-β signalling. Nature 431, 205–211 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Lin, H. K., Wang, L., Hu, Y. C., Altuwaijri, S. & Chang, C. Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J. 21, 4037–4048 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P. Phosphorylation and functional inactivation of TSC2 by Erk: implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Sebastiaan Winkler, G. et al. Isolation and mass spectrometry of transcription factor complexes. Methods 26, 260–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, S. Y., Herbst, A., Tworkowski, K. A., Salghetti, S. E. & Tansey, W. P. Skp2 regulates Myc protein stability and activity. Mol. Cell 11, 1177–1188 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Lin, H. K., Yeh, S., Kang, H. Y. & Chang, C. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc. Natl Acad. Sci. USA 98, 7200–7205 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Bohmann, P. Jackson, W. Wei, M. Pagano and M. H. Lee for reagents. We are also grateful to M. Asherov and I. Linkov in the Immunohistochemistry Pathology Core Laboratory, T. Matos for immunohistochemistry technical assistance, P. Bonner for data management, L. Lacomis for help with mass spectrometry, X. H. Zhu for technical advice, and S. Clohessy for flow cytometry analysis. We also thank M. C. Hung and L. Cantley for insightful comments and suggestions, and W. Wei for discussion and for sharing experimental results. Special thanks are extended to B. Carver and L. DiSantis for editing and critical reading of the manuscript, as well as to all the members of the Pandolfi laboratory for comments and discussion. This work was supported by NIH grants RO1 CA-71692 and CA-74031 to P.P.P. and by M. D. Anderson Cancer Center Trust Scholar funds to H.K.L. The Microchemistry & Proteomics Core is supported by NIH grant P30 CA-08748.

Author information

Authors and Affiliations

Authors

Contributions

H.K.L. and P.P.P. designed the experiments and wrote the manuscript. H.K.L., G.W. Z.C., Y.L., C.H.C. and W.L.Y. performed the experiments. J.T. performed the immunohistochemistry and analysed the data. K.I.N. provided the Skp2−/− mice. S.N. provided valuable suggestions. H.E. and P.T. performed the mass spectrometry analysis.

Corresponding authors

Correspondence to Hui-Kuan Lin or Pier Paolo Pandolfi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2394 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, HK., Wang, G., Chen, Z. et al. Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat Cell Biol 11, 420–432 (2009). https://doi.org/10.1038/ncb1849

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing