Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction

This article has been updated

Abstract

Deregulated Skp2 function promotes cell transformation, and this is consistent with observations of Skp2 overexpression in many human cancers. However, the mechanisms underlying elevated Skp2 expression are still unknown. Here we show that the serine/threonine protein kinase Akt1, but not Akt2, directly controls Skp2 stability by a mechanism that involves degradation by the APC–Cdh1 ubiquitin ligase complex. We show further that Akt1 phosphorylates Skp2 at Ser 72, which is required to disrupt the interaction between Cdh1 and Skp2. In addition, we show that Ser 72 is localized within a putative nuclear localization sequence and that phosphorylation of Ser 72 by Akt leads to cytoplasmic translocation of Skp2. This finding expands our knowledge of how specific signalling kinase cascades influence proteolysis governed by APC–Cdh1 complexes, and provides evidence that elevated Akt activity and cytoplasmic Skp2 expression may be causative for cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human Skp2 protein levels are regulated by the PTEN/PI(3)K/Akt pathway.
Figure 2: The PTEN/PI(3)K/Akt pathway regulates both Skp2 transcription and Skp2 stability.
Figure 3: The Skp2 protein contains a canonical Akt phosphorylation site at Ser 72 and interacts with Akt1, but not with Akt2, in vivo.
Figure 4: Akt phosphorylates the human Skp2 protein at Ser 72.
Figure 5: Phosphorylation of Skp2 at Ser 72 triggers the subsequent phosphorylation of Ser 75 by CKI.
Figure 6: Phosphorylation of Skp2 by Akt1 protects Skp2 from Cdh1-mediated destruction.
Figure 7: Phosphorylation of Skp2 at Ser 72 by Akt affects Skp2 protein stability.
Figure 8: Akt phosphorylation of Skp2 promotes its cytoplasmic translocation.

Similar content being viewed by others

Change history

  • 18 March 2009

    In the version of this article initially published online, Fig 6e had no separating lines between Akt1 and Akt2 or Cdh1 and Cdh1/Akt1. This error has now been corrected for the HTML and PDF versions of the article.

References

  1. Cardozo, T. & Pagano, M. The SCF ubiquitin ligase: insights into a molecular machine. Nature Rev. Mol. Cell Biol. 5, 739–751 (2004).

    Article  CAS  Google Scholar 

  2. Gstaiger, M. et al. Skp2 is oncogenic and overexpressed in human cancers. Proc. Natl Acad. Sci. USA 98, 5043–5048 (2001).

    Article  CAS  Google Scholar 

  3. Signoretti, S. et al. Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J. Clin. Invest. 110, 633–641 (2002).

    Article  CAS  Google Scholar 

  4. Bashir, T., Dorrello, N. V., Amador, V., Guardavaccaro, D. & Pagano, M. Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428, 190–193 (2004).

    Article  CAS  Google Scholar 

  5. Wei, W. et al. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428, 194–198 (2004).

    Article  CAS  Google Scholar 

  6. van Duijn, P. W. & Trapman, J. PI3K/Akt signaling regulates p27kip1 expression via Skp2 in PC3 and DU145 prostate cancer cells, but is not a major factor in p27kip1 regulation in LNCaP and PC346 cells. Prostate 66, 749–760 (2006).

    Article  CAS  Google Scholar 

  7. Andreu, E. J. et al. BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells. Cancer Res. 65, 3264–3272 (2005).

    Article  CAS  Google Scholar 

  8. Mamillapalli, R. et al. PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27KIP1 through the ubiquitin E3 ligase SCFSKP2. Curr. Biol. 11, 263–267 (2001).

    Article  CAS  Google Scholar 

  9. Woodgett, J. R. Recent advances in the protein kinase B signaling pathway. Curr. Opin. Cell Biol. 17, 150–157 (2005).

    Article  CAS  Google Scholar 

  10. Parsons, R. Human cancer, PTEN and the PI-3 kinase pathway. Semin. Cell Dev. Biol. 15, 171–176 (2004).

    Article  CAS  Google Scholar 

  11. Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    Article  CAS  Google Scholar 

  12. Zhao, X. et al. Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation- and 14-3-3-dependent and -independent mechanisms. Biochem. J. 378, 839–849 (2004).

    Article  CAS  Google Scholar 

  13. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  Google Scholar 

  14. Zhou, B. P. et al. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nature Cell Biol. 3, 245–252 (2001).

    Article  CAS  Google Scholar 

  15. Viglietto, G. et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27Kip1 by PKB/Akt-mediated phosphorylation in breast cancer. Nature Med. 8, 1136–1144 (2002).

    Article  CAS  Google Scholar 

  16. Liang, J. et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nature Med. 8, 1153–1160 (2002).

    Article  CAS  Google Scholar 

  17. Shin, I. et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization. Nature Med. 8, 1145–1152 (2002).

    Article  CAS  Google Scholar 

  18. Whiteman, E. L., Cho, H. & Birnbaum, M. J. Role of Akt/protein kinase B in metabolism. Trends Endocrinol. Metab. 13, 444–451 (2002).

    Article  CAS  Google Scholar 

  19. Heron-Milhavet, L. et al. Only Akt1 is required for proliferation, while Akt2 promotes cell cycle exit through p21 binding. Mol. Cell. Biol. 26, 8267–8280 (2006).

    Article  CAS  Google Scholar 

  20. Irie, H. Y. et al. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition. J. Cell Biol. 171, 1023–1034 (2005).

    Article  CAS  Google Scholar 

  21. Drobnjak, M. et al. Altered expression of p27 and Skp2 proteins in prostate cancer of African-American patients. Clin. Cancer Res. 9, 2613–2619 (2003).

    CAS  PubMed  Google Scholar 

  22. Radke, S., Pirkmaier, A. & Germain, D. Differential expression of the F-box proteins Skp2 and Skp2B in breast cancer. Oncogene 24, 3448–3458 (2005).

    Article  CAS  Google Scholar 

  23. Shapira, M., Kakiashvili, E., Rosenberg, T. & Hershko, D. D. The mTOR inhibitor rapamycin down-regulates the expression of the ubiquitin ligase subunit Skp2 in breast cancer cells. Breast Cancer Res. 8, R46 (2006).

    Article  Google Scholar 

  24. Reichert, M., Saur, D., Hamacher, R., Schmid, R. M. & Schneider, G. Phosphoinositide-3-kinase signaling controls S-phase kinase-associated protein 2 transcription via E2F1 in pancreatic ductal adenocarcinoma cells. Cancer Res. 67, 4149–4156 (2007).

    Article  CAS  Google Scholar 

  25. Barre, B. & Perkins, N. D. A cell cycle regulatory network controlling NF-κB subunit activity and function. EMBO J. 26, 4841–4855 (2007).

    Article  CAS  Google Scholar 

  26. Zhou, B. P. et al. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nature Cell Biol. 3, 973–982 (2001).

    Article  CAS  Google Scholar 

  27. Zhang, H. et al. Phosphoprotein analysis using antibodies broadly reactive against phosphorylated motifs. J. Biol. Chem. 277, 39379–39387 (2002).

    Article  CAS  Google Scholar 

  28. Hong, F. et al. mTOR-raptor binds and activates SGK1 to regulate p27 phosphorylation. Mol. Cell 30, 701–711 (2008).

    Article  CAS  Google Scholar 

  29. Yam, C. H., Ng, R. W., Siu, W. Y., Lau, A. W. & Poon, R. Y. Regulation of cyclin A-Cdk2 by SCF component Skp1 and F-box protein Skp2. Mol. Cell. Biol. 19, 635–645 (1999).

    Article  CAS  Google Scholar 

  30. Tran, H., Brunet, A., Griffith, E. C. & Greenberg, M. E. The many forks in FOXO's road. Sci. STKE 2003, RE5 (2003).

    PubMed  Google Scholar 

  31. Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999).

    Article  CAS  Google Scholar 

  32. Rodier, G., Coulombe, P., Tanguay, P. L., Boutonnet, C. & Meloche, S. Phosphorylation of Skp2 regulated by CDK2 and Cdc14B protects it from degradation by APCCdh1 in G1 phase. EMBO J. 27, 679–691 (2008).

    Article  CAS  Google Scholar 

  33. Ji, P. et al. Skp2 contains a novel cyclin A binding domain that directly protects cyclin A from inhibition by p27Kip1. J. Biol. Chem. 281, 24058–24069 (2006).

    Article  CAS  Google Scholar 

  34. Vogt, P. K., Jiang, H. & Aoki, M. Triple layer control: phosphorylation, acetylation and ubiquitination of FOXO proteins. Cell Cycle 4, 908–913 (2005).

    Article  CAS  Google Scholar 

  35. Chiang, C. W. et al. Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis. Mol. Cell. Biol. 23, 6350–6362 (2003).

    Article  CAS  Google Scholar 

  36. Wang, B. et al. Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. Biochemistry 38, 12499–12504 (1999).

    Article  CAS  Google Scholar 

  37. Poon, I. K. & Jans, D. A. Regulation of nuclear transport: central role in development and transformation? Traffic 6, 173–186 (2005).

    Article  CAS  Google Scholar 

  38. Fabbro, M. & Henderson, B. R. Regulation of tumor suppressors by nuclear-cytoplasmic shuttling. Exp. Cell Res. 282, 59–69 (2003).

    Article  CAS  Google Scholar 

  39. Fujita, E. et al. Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem. Biophys. Res. Commun. 264, 550–555 (1999).

    Article  CAS  Google Scholar 

  40. Harper, J. W., Burton, J. L. & Solomon, M. J. The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev. 16, 2179–2206 (2002).

    Article  CAS  Google Scholar 

  41. Mailand, N. & Diffley, J. F. CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122, 915–926 (2005).

    Article  CAS  Google Scholar 

  42. Hennekes, H., Peter, M., Weber, K. & Nigg, E. A. Phosphorylation on protein kinase C sites inhibits nuclear import of lamin B2. J. Cell Biol. 120, 1293–1304 (1993).

    Article  CAS  Google Scholar 

  43. Zhang, F., White, R. L. & Neufeld, K. L. Cell density and phosphorylation control the subcellular localization of adenomatous polyposis coli protein. Mol. Cell. Biol. 21, 8143–8156 (2001).

    Article  CAS  Google Scholar 

  44. Dowen, S. E., Scott, A., Mukherjee, G. & Stanley, M. A. Overexpression of Skp2 in carcinoma of the cervix does not correlate inversely with p27 expression. Int. J. Cancer 105, 326–330 (2003).

    Article  CAS  Google Scholar 

  45. Yoeli-Lerner, M. et al. Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol. Cell 20, 539–550 (2005).

    Article  CAS  Google Scholar 

  46. Hamada, K. et al. The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev. 19, 2054–2065 (2005).

    Article  CAS  Google Scholar 

  47. Zhang, G. J. et al. Bioluminescent imaging of Cdk2 inhibition in vivo. Nature Med. 10, 643–648 (2004).

    Article  CAS  Google Scholar 

  48. Wei, W., Jin, J., Schlisio, S., Harper, J. W. & Kaelin, W. G. Jr. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8, 25–33 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank William Kaelin Jr, Lewis Cantley, Roya Khosravi-Far and Susan Glueck for critical reading of the manuscript; James DeCaprio, Christoph Geisen, Ronald DePinho, Laura Benjamin, Suzanne Conzen, John Blenis and Peter Jackson for providing reagents; Ross Tomaino for his kind assistance on the mass spectrum analysis; Isaac Robinovitz for his technical support on the fluorescence microscopy; Pier Paolo Pandolfi for sharing unpublished data; and members of the Wei and Toker laboratories for useful discussions. W.W. is a Leukemia and Lymphoma Society Special Fellow, Kimmel Scholar and V Scholar. This work was supported in part by the Harvard Medical School Milton Fund (W.W.) and the Emerald Foundation, and by grants from the National Institutes of Health (W.G.K., CA076120; A.T., CA122099) and the Susan G. Komen Breast Cancer Foundation (R.Y.C., 0706963).

Author information

Authors and Affiliations

Authors

Contributions

D.G. and H.I. performed most of the experiments with the assistance of A.Tseng. R.Y.C. performed the shAkt1 and shAkt2 experiment to examine its effects on Skp2 Ser 72 phosphorylation. W.W. and A.T. designed the experiments. W.W. supervised the study. W.W. wrote the paper with the assistance of A.T. All authors commented on the manuscript.

Corresponding author

Correspondence to Wenyi Wei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4968 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, D., Inuzuka, H., Tseng, A. et al. Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol 11, 397–408 (2009). https://doi.org/10.1038/ncb1847

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1847

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing