Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of ATM depends on chromatin interactions occurring before induction of DNA damage

Abstract

Efficient and correct responses to double-stranded breaks (DSB) in chromosomal DNA are crucial for maintaining genomic stability and preventing chromosomal alterations that lead to cancer1,2. The generation of DSB is associated with structural changes in chromatin and the activation of the protein kinase ataxia-telangiectasia mutated (ATM), a key regulator of the signalling network of the cellular response to DSB3,4. The interrelationship between DSB-induced changes in chromatin architecture and the activation of ATM is unclear4. Here we show that the nucleosome-binding protein HMGN1 modulates the interaction of ATM with chromatin both before and after DSB formation, thereby optimizing its activation. Loss of HMGN1 or ablation of its ability to bind to chromatin reduces the levels of ionizing radiation (IR)-induced ATM autophosphorylation and the activation of several ATM targets. IR treatments lead to a global increase in the acetylation of Lys 14 of histone H3 (H3K14) in an HMGN1-dependent manner and treatment of cells with histone deacetylase inhibitors bypasses the HMGN1 requirement for efficient ATM activation. Thus, by regulating the levels of histone modifications, HMGN1 affects ATM activation. Our studies identify a new mediator of ATM activation and demonstrate a direct link between the steady-state intranuclear organization of ATM and the kinetics of its activation after DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of HMGN1 impairs IR-induced ATM autophosphorylation and activation.
Figure 2: Enhanced ATM chromatin retention in Hmgn1−/− cells.
Figure 3: HMGN1 enhances ATM activation by binding to chromatin.
Figure 4: HMGN1 modulates the interaction of ATM with chromatin.

Similar content being viewed by others

References

  1. Mills, K. D., Ferguson, D. O. & Alt, F. W. The role of DNA breaks in genomic instability and tumorigenesis. Immunol. Rev. 194, 77–95 (2003).

    Article  CAS  Google Scholar 

  2. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    Article  CAS  Google Scholar 

  3. Shiloh, Y. The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci. 31, 402–410 (2006).

    Article  CAS  Google Scholar 

  4. Lavin, M. F. & Kozlov, S. ATM activation and DNA damage response. Cell Cycle 6, 931–942 (2007).

    Article  CAS  Google Scholar 

  5. Wurtele, H. & Verreault, A. Histone post-translational modifications and the response to DNA double-strand breaks. Curr. Opin. Cell Biol. 18, 137–144 (2006).

    Article  CAS  Google Scholar 

  6. Koundrioukoff, S., Polo, S. & Almouzni, G. Interplay between chromatin and cell cycle checkpoints in the context of ATR/ATM-dependent checkpoints. DNA Repair 3, 969–978 (2004).

    Article  CAS  Google Scholar 

  7. Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol. 172, 823–834 (2006).

    Article  CAS  Google Scholar 

  8. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  Google Scholar 

  9. Ziv, Y. et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nature Cell Biol. 8, 870–876 (2006).

    Article  CAS  Google Scholar 

  10. Hock, R., Furusawa, T., Ueda, T. & Bustin, M. HMG chromosomal proteins in development and disease. Trends Cell Biol. 17, 72–79 (2007).

    Article  CAS  Google Scholar 

  11. Reeves, R. & Adair, J. E. Role of high mobility group (HMG) chromatin proteins in DNA repair. DNA Repair 4, 926–938 (2005).

    Article  CAS  Google Scholar 

  12. Bianchi, M. E. & Agresti, A. HMG proteins: dynamic players in gene regulation and differentiation. Curr. Opin. Genet. Dev. 15, 496–506 (2005).

    Article  CAS  Google Scholar 

  13. Bustin, M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol. Cell Biol. 19, 5237–5246 (1999).

    Article  CAS  Google Scholar 

  14. Birger, Y. et al. Chromosomal protein HMGN1 enhances the rate of DNA repair in chromatin. EMBO J. 22, 1665–1675 (2003).

    Article  CAS  Google Scholar 

  15. Birger, Y. et al. Increased tumorigenicity and sensitivity to ionizing radiation upon loss of chromosomal protein HMGN1. Cancer Res. 65, 6711–6718 (2005).

    Article  CAS  Google Scholar 

  16. Pellegrini, M. et al. Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 443, 222–225 (2006).

    Article  CAS  Google Scholar 

  17. Lee, J. H. & Paull, T. T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308, 551–554 (2005).

    Article  CAS  Google Scholar 

  18. Uziel, T. et al. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22, 5612–5621 (2003).

    Article  CAS  Google Scholar 

  19. Wang, B., Matsuoka, S., Carpenter, P. B. & Elledge, S. J. 53BP1, a mediator of the DNA damage checkpoint. Science 298, 1435–1438 (2002).

    Article  CAS  Google Scholar 

  20. DiTullio, R. A. Jr, et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nature Cell Biol. 4, 998–1002 (2002).

    Article  CAS  Google Scholar 

  21. Stewart, G. S., Wang, B., Bignell, C. R., Taylor, A. M. & Elledge, S. J. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421, 961–966 (2003).

    Article  CAS  Google Scholar 

  22. Goldberg, M. et al. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421, 952–956 (2003).

    Article  CAS  Google Scholar 

  23. Catez, F., Lim, J. H., Hock, R., Postnikov, Y. V. & Bustin, M. HMGN dynamics and chromatin function. Biochem. Cell Biol. 81, 113–122 (2003).

    Article  CAS  Google Scholar 

  24. Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).

    Article  CAS  Google Scholar 

  25. Andegeko, Y. et al. Nuclear retention of ATM at sites of DNA double strand breaks. J. Biol. Chem. 276, 38224–38230 (2001).

    CAS  PubMed  Google Scholar 

  26. Lou, Z. et al. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol. Cell 21, 187–200 (2006).

    Article  CAS  Google Scholar 

  27. Lim, J. H. et al. Chromosomal protein HMGN1 modulates histone H3 phosphorylation. Mol. Cell 15, 573–584 (2004).

    Article  CAS  Google Scholar 

  28. Lim, J. H. et al. Chromosomal protein HMGN1 enhances the acetylation of lysine 14 in histone H3. EMBO J. 24, 3038–3048 (2005).

    Article  CAS  Google Scholar 

  29. Murr, R. et al. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nature Cell Biol. 8, 91–99 (2006).

    Article  CAS  Google Scholar 

  30. Celeste, A. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biol. 5, 675–679 (2003).

    Article  CAS  Google Scholar 

  31. Sun, Y., Jiang, X., Chen, S., Fernandes, N. & Price, B. D. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl Acad. Sci. USA 102, 13182–13187 (2005).

    Article  CAS  Google Scholar 

  32. Difilippantonio, S. et al. Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nature Cell Biol. 7, 675–685 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Celeste (NCI) for advice and help, and S. Garfield (Confocal Core Facility of the LEC, NCI), for help with imaging. The research was supported by the intramural program of the NCI. Work in the laboratory of Y.S. is supported by the A-T Medical Research Foundation, the A-T Children's Project, The Israel Science Foundation, the A-T Medical Research Trust, the Israel-Germany Joint Program on Cancer Research, and the A-T Ease Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bustin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1365 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YC., Gerlitz, G., Furusawa, T. et al. Activation of ATM depends on chromatin interactions occurring before induction of DNA damage. Nat Cell Biol 11, 92–96 (2009). https://doi.org/10.1038/ncb1817

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1817

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing