Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis

Abstract

The morphogenesis of developing embryos and organs relies on the ability of cells to remodel their contacts with neighbouring cells. Using quantitative modelling and laser nano-dissection, we probed the mechanics of a morphogenetic process, the elongation of Drosophila melanogaster embryos, which results from polarized cell neighbour exchanges. We show that anisotropy of cortical tension at apical cell junctions is sufficient to drive tissue elongation. We estimated its value through comparisons between in silico and in vivo data using various tissue descriptors. Nano-dissection of the actomyosin network indicates that tension is anisotropically distributed and depends on myosin II accumulation. Junction relaxation after nano-dissection also suggests that cortical elastic forces are dominant in this process. Interestingly, fluctuations in vertex position (points where three or more cells meet) facilitate neighbour exchanges. We delineate the contribution of subcellular tensile activity polarizing junction remodelling, and the permissive role of vertex fluctuations during tissue elongation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanics of local cell rearrangements during tissue elongation in Drosophila embryos.
Figure 2: Cortical elasticity and line tension models.
Figure 3: Model of tension anisotropy and cell intercalation.
Figure 4: Tension anisotropy is sufficient to drive tissue elongation.
Figure 5: Comparison of cell patterns in vivo and in silico using different descriptors.
Figure 6: Forces during cell intercalation revealed by laser nano-dissection.
Figure 7: Mechanics of high-order structures.

Similar content being viewed by others

References

  1. Hutson, M. S. et al. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300, 145–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Keller, R. Mechanisms of elongation in embryogenesis. Development 133, 2291–2302 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Thomson, D. W. On Growth and Form (Cambridge University Press, New York; 1961).

    Google Scholar 

  4. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Hayashi, T. & Carthew, R. W. Surface mechanics mediate pattern formation in the developing retina. Nature 431, 647–652 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Bao, S. & Cagan, R. Preferential adhesion mediated by Hibris and Roughest regulates morphogenesis and patterning in the Drosophila eye. Dev. Cell 8, 925–935 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Käfer, J., Hayashi, T., Marée, A. F., Carthew, R. W. & Graner, F. Cell adhesion and cortex contractility determine cell patterning in the Drosophila retina. Proc. Natl Acad. Sci. USA 104, 18549–18554 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev. Mol. Cell. Biol. 8, 633–644 (2007).

    Article  CAS  Google Scholar 

  9. Steinberg, M. S. Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 141, 401–408 (1963).

    Article  CAS  PubMed  Google Scholar 

  10. Steinberg, M. S. & Takeichi, M. Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc. Natl Acad. Sci. USA 91, 206–209 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Foty, R. A. & Steinberg, M. S. The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255–263 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Graner, F. & Glazier, J. A. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69, 2013–2016 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Farhadifar, R., Roper, J. C., Aigouy, B., Eaton, S. & Julicher, F. The influence of cell mechanics, cell–cell Interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Irvine, K. D. & Wieschaus, E. Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes. Development 120, 827–841 (1994).

    CAS  PubMed  Google Scholar 

  15. Blankenship, J. T., Backovic, S. T., Sanny, J. S., Weitz, O. & Zallen, J. A. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11, 459–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Ouchi, N. B., Glazier, J. A., Rieu, J. P., Upadhyaya, A. & Sawada, Y. Phys. A. 329, 451–458 (2003).

    Article  Google Scholar 

  17. Cavey, M., Rauzi, M., Lenne, P. F. & Lecuit, T. A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature 453, 751–756 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Brodland, G. W. The differential interfacial tension hypothesis (DITH): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J. Biomech. Eng. 124, 188–197 (2002).

    Article  PubMed  Google Scholar 

  19. Zajac, M., Jones, G. L. & Glazier, J. A. Simulating convergent extension by way of anisotropic differential adhesion. J. Theor. Biol. 222, 247–259 (2003).

    Article  PubMed  Google Scholar 

  20. Mombach, J. C., Glazier, J. A., Raphael, R. C. & Zajac, M. Quantitative comparison between differential adhesion models and cell sorting in the presence and absence of fluctuations. Phys. Rev. Lett. 75, 2244–2247 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Graner, F., Dollet, B., Raufaste, C. & Marmottant, P. Discrete rearranging disordered patterns, part I: Robust statistical tools in two or three dimensions. Eur. Phys. J. E 25, 349–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Zallen, J. A. & Zallen, R. Cell-pattern disordering during convergent extension in Drosophila. J. Phys.: Condens. Matter 16, S5073–S5080 (2004).

    CAS  Google Scholar 

  23. Shraiman, B. I. Mechanical feedback as a possible regulator of tissue growth. Proc. Natl Acad. Sci. USA 102, 3318–3323 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Farge, E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 13, 1365–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Hufnagel, L., Teleman, A. A., Rouault, H., Cohen, S. M. & Shraiman, B. I. On the mechanism of wing size determination in fly development. Proc. Natl Acad. Sci. USA 104, 3835–3840 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zajac, M., Jones, G. L. & Glazier, J. A. Model of convergent extension in animal morphogenesis. Phys. Rev. Lett. 85, 2022–2025 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Brakke, K. The surface evolver. Exp. Math 1, 41 (1990).

    Google Scholar 

  28. Oda, H. & Tsukita, S. Real-time imaging of cell–cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells. J. Cell. Sci. 114, 493–501 (2001).

    CAS  PubMed  Google Scholar 

  29. Cavey, M. & Lecuit, T. Imaging cellular and molecular dynamics in live embryos using fluorescent proteins. Methods Mol. Biol. 420, 219–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. König, K. Multiphoton microscopy in life sciences. J. Microscopy 200, 83–104 (2000).

    Article  Google Scholar 

  31. Kumar, S. et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90, 3762–3773 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rasband, W. S. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 1997–2008.

Download references

Acknowledgements

We thank all the members of the Lenne and Lecuit labs for technical help, in particular M. Cavey and C. Bertet. We thank C. Bertet for Fig. 1c. We are grateful for D. Kiehart, H. Oda and C. Field for the gift of flies and antibodies. We thank everyone, especially Loic Le Goff for fruitful discussions during the course of this project. K. Brakke is acknowledged for help with Surface Evolver, F. Graner and A. Nicolas for insights and useful suggestions on the manuscript, and J. Axelrod, E. Munro, O. Pourquié and members of the Lenne and Lecuit labs for critical reading of the manuscript. Supported by the CNRS and an ANR-Blanc grant to T.L. and P.-F.L. M.R. is supported by a Bourse Région Entreprise (Amplitude Systems), and P.V. is supported by a Postdoctoral Fellowship from ANR.

Author information

Authors and Affiliations

Authors

Contributions

P.-F.L. and T.L. conceived and designed the project; P.-F.L., T.L., M.R. and P.V analysed the data; P.-F.L. and M.R. designed and built the set-up for nano-dissection experiments; M.R. performed the nano-dissection experiments; P.V. designed and wrote the image analysis tool with P.-F.L. and conducted the quantitative studies of germband elongation movies; P.-F.L. performed the simulations; P.-F.L. and T.L. wrote the paper; all authors read and edited the manuscript.

Corresponding authors

Correspondence to Thomas Lecuit or Pierre-François Lenne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1533 kb)

Supplementary Information

Supplementary Movie 1 (MOV 2982 kb)

Supplementary Information

Supplementary Movie 2 (MOV 2999 kb)

Supplementary Information

Supplementary Movie 3 (MOV 2909 kb)

Supplementary Information

Supplementary Movie 4 (MOV 710 kb)

Supplementary Information

Supplementary Movie 5 (MOV 2918 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauzi, M., Verant, P., Lecuit, T. et al. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat Cell Biol 10, 1401–1410 (2008). https://doi.org/10.1038/ncb1798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1798

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing