Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tethering by lamin A stabilizes and targets the ING1 tumour suppressor

Abstract

ING proteins interact with core histones through their plant homeodomains (PHDs)1,2,3,4 and with histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes to alter chromatin structure5,6,7. Here we identify a lamin interaction domain (LID) found only in ING proteins, through which they bind to and colocalize with lamin A. Lamin knockout (LMNA−/−) cells show reduced levels of ING1 that mislocalize. Ectopic lamin A expression increases ING1 levels and re-targets it to the nucleus to act as an epigenetic regulator6,8. ING1 lacking the LID does not interact with lamin A or affect apoptosis. In LMNA−/− cells, apoptosis is not affected by ING1. Mutation of lamin A results in several laminopathies, including Hutchinson-Gilford progeria syndrome (HGPS), a severe premature ageing disorder9. HGPS cells have reduced ING1 levels that mislocalize. Expression of LID peptides to block lamin A–ING1 interaction induces phenotypes reminiscent of laminopathies including HGPS9,10. These data show that targeting of ING1 to the nucleus by lamin A maintains ING1 levels and biological function. Known roles for ING proteins in regulating apoptosis and chromatin structure indicate that loss of lamin A–ING interaction may be an effector of lamin A loss, contributing to the HGPS phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural features of ING1 and potential binding partners of the LID.
Figure 2: ING1 binds to lamin A through a LID.
Figure 3: ING1 localization in different model cell systems.
Figure 4: Lamin A affects ING1 levels and biological activity.
Figure 5: Overexpression of ING constructs affects nuclear morphology and induces senescence.

Similar content being viewed by others

References

  1. Shi, X. et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 96–99 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pena, P. V. et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442, 100–103 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martin, D. G. et al. The Yng1p plant homeodomain finger is a methyl-histone binding module that recognizes lysine 4-methylated histone H3. Mol. Cell Biol. 26, 7871–7879. (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Palacios, A. et al. Solution structure and NMR characterization of the binding to methylated histone tails of the plant homeodomain finger of the tumour suppressor ING4. FEBS Lett. 580, 6903–6908 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Young, D. Three yeast proteins related to the human candidate tumor suppressor p33ING1 are associated with histone acetyltransferase activities. Mol. Cell Biol. 20, 3807–3816 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Reinberg, D. Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33 (ING1). Mol. Cell Biol. 22, 835–848 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Doyon, Y. C. et al. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol. Cell 21, 51–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Soliman, M. A. & Riabowol, K. After a decade of study-ING, a PHD for a versatile family of proteins. Trends Biochem Sci. 32, 509–519 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423, 293–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Burke, B. & Stewart, CL. The laminopathies: the functional architecture of the nucleus and its contribution to disease. Ann. Rev Genomics Hum Genet. 7, 369–405 (2006).

    Article  CAS  Google Scholar 

  11. He, G. H., Helbing, C. C., Wagner, M. J., Sensen, C. W. & Riabowol, K. Mol. Biol Evol. 22, 104–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Riabowol, K. Extension of the replicative life span of human diploid fibroblasts by inhibition of the p33ING1 candidate tumor suppressor. Mol. Cell Biol. 17, 2014–2019 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pedeux, R. et al. ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation. Mol. Cell Biol. 25, 6639–6648 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scott, M. et al. UV-induced binding of ING1 to PCNA regulates the induction of apoptosis. J. Cell Sci. 114, 3455–3462 (2001).

    CAS  PubMed  Google Scholar 

  15. Chin, M. Y, & Li, G. The novel tumor suppressor p33ING2 enhances nucleotide excision repair via inducement of histone H4 acetylation and chromatin relaxation. Cancer Res. 66, 1906–1911 (2006).

    Article  PubMed  Google Scholar 

  16. Zastrow, M. S., Vicek, S. & Wilson, K. L. Proteins that bind A-type lamins: integrating isolated clues. J. Cell Sci. 117, 979–987 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Taniura, H., Glass, C. & Gerace, L. A chromatin binding site in the tail domain of nuclear lamins that interacts with core histones. J. Cell Biol. 131, 33–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Ozaki, T. et al. Complex formation between lamin A and the retinoblastoma gene product: identification of the domain on lamin A required for its interaction. Oncogene 9, 2649–2653 (1994).

    CAS  PubMed  Google Scholar 

  19. Johnson, B. R. et al. A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing proteosomal degradation. Proc. Natl Acad Sci. USA 101, 9677–9682 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Helsens, K., Martens, L., Vandekerckhove, J. & Gevaert, K. MascotDatfile: an open-source library to fully parse and analyse MASCOT MS/MS search results. Proteomics. 7, 364–366 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Broers, J. L., Ramaekers, F. C., Bonne, G., Yaou, R. B. & Hutchison, C. J. Nuclear lamins: laminopathies and their role in premature ageing. Physiol Rev. 86, 967–1008 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Sullivan, T. et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147, 913–920 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goldman, R. D. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. U. S.A 101, 8963–8968 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coles, A. H. et al. Deletion of p37Ing1 in mice reveals a p53-independent role for Ing1 in the suppression of cell proliferation, apoptosis, and tumorigenesis. Cancer Res. 67, 2054–2061 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vieyra, D. et al. Human ING1 Proteins Differentially Regulate Histone Acetylation. J. Biol Chem. 277, 29832–29839 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Taverna, S. D. et al. Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol. Cell 24, 785–796 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nouman, G. S. et al. Down regulation of nuclear expression of the p33 (ING1b) inhibitor of growth protein in invasive carcinoma of the breast. J. Clin Pathol. 56, 507–511 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vieyra, D. et al. Ing1 isoforms differentially affect apoptosis in a cell age-dependent manner. Cancer Res. 62, 4445–4452 (2002).

    CAS  PubMed  Google Scholar 

  29. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    Article  CAS  Google Scholar 

  30. Shumaker, D. K. et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl. Acad. Sci. U. S. A 103, 8703–8708 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Broers, J. L. et al. Dynamics of the nuclear lamina as monitored by GFP-tagged A-type lamins. J. Cell Sci. 112, 3463–3475 (1999).

    CAS  PubMed  Google Scholar 

  32. Moir, R. D, Yoon, M., Khoun, S. & Goldman, R. D. Nuclear Lamins A and B1: Different Pathways of Assembly during Nuclear Envelope Formation in Living Cells. J. Cell Biol. 151, 1155–1168 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Candelario, J., Sudhakar, S., Navarro, S., Reddy, S. & Comai, L. Perturbation of wild-type lamin A metabolism results in a progeroid pgenotype. Aging Cell 7, 355–367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lai, A. et al. RBP1 recruits the mSIN3-histone deacetylase complex to the pocket of retinoblastoma tumor suppressor family proteins found in limited discrete regions of the nucleus at growth arrest. Mol. Cell Biol. 21, 2918–32 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Walzak, A. A., Veldhoen, N, Feng, X, Riabowol, K. & Helbing, C. C. Expression profiles of mRNA transcript variants encoding the human inhibitor of growth tumor suppressor gene family in normal and neoplastic tissues. Exp. Cell Res. 314, 273–85 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. White for lamin constructs, J. Quarrie and D. Rancourt for ES cells, the SACRI Microscopy Facility for cell imaging, D. Boland and S. Law of the SAS for ING antibodies, D. Schreimer for LC/MS/MS advice and L. Robertson for help with flow cytometry. This study was supported by grants from the CIHR to K.R., from the NSERC to J.B.R. and to B.B. from the NIH. K.R. is a Scientist of the AHFMR, M.A.S. holds studentships from AHFMR and the Alberta Cancer Board (ACB) and H.S. and P.B. hold an ACB studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Riabowol.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1374 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Feng, X., Rattner, J. et al. Tethering by lamin A stabilizes and targets the ING1 tumour suppressor. Nat Cell Biol 10, 1333–1340 (2008). https://doi.org/10.1038/ncb1792

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1792

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing