Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks

Abstract

Mammalian circadian clocks consist of complex regulatory loops mediated through—at least—morning, daytime and night-time DNA elements. To prove the transcriptional logic of mammalian clocks, we developed an in cellulo mammalian cell-culture system that allowed us to design and implement artificial transcriptional circuits. Here we show that morning activation and night-time repression can yield the transcriptional output during the daytime, and similarly that daytime activation and morning repression can yield night-time transcriptional output. We also observed that the diverse transcriptional outputs of other phases can be generated through the expression of simple combinations of transcriptional activators and repressors. These results reveal design principles not only for understanding the continuous transcriptional outputs observed in vivo but also for the logical construction of artificial promoters working at novel phases. Logical synthesis of artificial circuits, with an identified structure and observed dynamics, provides an alternative strategy applicable to the investigation of complex biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Using an in cellulo mammalian cell-culture system for the physical simulation of natural transcriptional circuits.
Figure 2: Proof-by-synthesis of daytime and night-time transcriptional regulations.
Figure 3: Synthesis of various output phases from three basic circadian phases in artificial transcriptional circuits.
Figure 4: Transcriptional mechanisms to generate various output phases.
Figure 5: Transcriptional logic underlying mammalian circadian clocks.

Similar content being viewed by others

References

  1. Hogenesch, J. B. et al. Characterization of a subset of the basic-helix–loop–helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J. Biol. Chem. 272, 8581–8593 (1997).

    Article  CAS  Google Scholar 

  2. Gekakis, N. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564–1569 (1998).

    Article  CAS  Google Scholar 

  3. Yoo, S. H. et al. A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo. Proc. Natl Acad. Sci. USA 102, 2608–2613 (2005).

    Article  CAS  Google Scholar 

  4. Ueda, H. R. et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nature Genet. 37, 187–192 (2005).

    Article  CAS  Google Scholar 

  5. Falvey, E., Marcacci, L. & Schibler, U. DNA-binding specificity of PAR and C/EBP leucine zipper proteins: a single amino acid substitution in the C/EBP DNA-binding domain confers PAR-like specificity to C/EBP. Biol. Chem. 377, 797–809 (1996).

    CAS  PubMed  Google Scholar 

  6. Harding, H. P. & Lazar, M. A. The orphan receptor Rev-ErbAα activates transcription via a novel response element. Mol. Cell. Biol. 13, 3113–3121 (1993).

    Article  CAS  Google Scholar 

  7. Preitner, N. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).

    Article  CAS  Google Scholar 

  8. Ueda, H. R. et al. A transcription factor response element for gene expression during circadian night. Nature 418, 534–539 (2002).

    Article  CAS  Google Scholar 

  9. Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).

    Article  CAS  Google Scholar 

  10. Bunger, M. K. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009–1017 (2000).

    Article  CAS  Google Scholar 

  11. King, D. P. Positional cloning of the mouse circadian clock gene. Cell 89, 641–653 (1997).

    Article  CAS  Google Scholar 

  12. Reick, M., Garcia, J. A., Dudley, C. & McKnight, S. L. NPAS2: an analog of clock operative in the mammalian forebrain. Science 293, 506–509 (2001).

    Article  CAS  Google Scholar 

  13. Okano, T., Sasaki, M. & Fukada, Y. Cloning of mouse BMAL2 and its daily expression profile in the suprachiasmatic nucleus: a remarkable acceleration of Bmal2 sequence divergence after Bmal gene duplication. Neurosci. Lett. 300, 111–114 (2001).

    Article  CAS  Google Scholar 

  14. Zheng, B. et al. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400, 169–173 (1999).

    Article  CAS  Google Scholar 

  15. Shearman, L. P., Jin, X., Lee, C., Reppert, S. M. & Weaver, D. R. Targeted disruption of the mPer3 gene: subtle effects on circadian clock function. Mol. Cell. Biol. 20, 6269–6275 (2000).

    Article  CAS  Google Scholar 

  16. Zheng, B. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105, 683–694 (2001).

    Article  CAS  Google Scholar 

  17. Cermakian, N., Monaco, L., Pando, M. P., Dierich, A. & Sassone-Corsi, P. Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene. EMBO J. 20, 3967–3974 (2001).

    Article  CAS  Google Scholar 

  18. Bae, K. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30, 525–536 (2001).

    Article  CAS  Google Scholar 

  19. van der Horst, G. T. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627–630 (1999).

    Article  CAS  Google Scholar 

  20. Vitaterna, M. H. et al. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl Acad. Sci. USA 96, 12114–12119 (1999).

    Article  CAS  Google Scholar 

  21. Honma, S. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419, 841–844 (2002).

    Article  CAS  Google Scholar 

  22. Lowrey, P. L. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288, 483–491 (2000).

    Article  CAS  Google Scholar 

  23. Xu, Y. et al. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature 434, 640–644 (2005).

    Article  CAS  Google Scholar 

  24. Lavery, D. J. et al. Circadian expression of the steroid 15 α-hydroxylase (Cyp2a4) and coumarin 7-hydroxylase (Cyp2a5) genes in mouse liver is regulated by the PAR leucine zipper transcription factor DBP. Mol. Cell. Biol. 19, 6488–6499 (1999).

    Article  CAS  Google Scholar 

  25. Gachon, F. et al. The loss of circadian PAR bZip transcription factors results in epilepsy. Genes Dev. 18, 1397–1412 (2004).

    Article  CAS  Google Scholar 

  26. Mitsui, S., Yamaguchi, S., Matsuo, T., Ishida, Y. & Okamura, H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 15, 995–1006 (2001).

    Article  CAS  Google Scholar 

  27. Sato, T. K. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527–537 (2004).

    Article  CAS  Google Scholar 

  28. André, E. et al. Disruption of retinoid-related orphan receptor β changes circadian behavior, causes retinal degeneration and leads to vacillans phenotype in mice. EMBO J. 17, 3867–3877 (1998).

    Article  Google Scholar 

  29. Sato, T. K. et al. Feedback repression is required for mammalian circadian clock function. Nature Genet. 38, 312–319 (2006).

    Article  CAS  Google Scholar 

  30. Akashi, M. & Takumi, T. The orphan nuclear receptor RORα regulates circadian transcription of the mammalian core-clock Bmal1. Nature Struct. Mol. Biol. 12, 441–448 (2005).

    Article  CAS  Google Scholar 

  31. Sadowski, I., Ma, J., Triezenberg, S. & Ptashne, M. GAL4–VP16 is an unusually potent transcriptional activator. Nature 335, 563–564 (1988).

    Article  CAS  Google Scholar 

  32. Gallego, M. & Virshup, D. M. Post-translational modifications regulate the ticking of the circadian clock. Nature Rev. Mol. Cell Biol. 8, 139–148 (2007).

    Article  CAS  Google Scholar 

  33. Kojima, S., Hirose, M., Tokunaga, K., Sakaki, Y. & Tei, H. Structural and functional analysis of 3′ untranslated region of mouse Period1 mRNA. Biochem. Biophys. Res. Commun. 301, 1–7 (2003).

    Article  CAS  Google Scholar 

  34. Lee, C., Etchegaray, J., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855–867 (2001).

    Article  CAS  Google Scholar 

  35. Eide, E. J., Vielhaber, E. L., Hinz, W. A. & Virshup, D. M. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon. J. Biol. Chem. 277, 17248–17254 (2002).

    Article  CAS  Google Scholar 

  36. Sanada, K., Okano, T. & Fukada, Y. Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix–loop–helix-PAS transcription factor BMAL1. J. Biol. Chem. 277, 267–271 (2002).

    Article  CAS  Google Scholar 

  37. Toh, K. L. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043 (2001).

    Article  CAS  Google Scholar 

  38. Yin, L., Wang, J., Klein, P. S. & Lazar, M. A. Nuclear receptor Rev-erbα is a critical lithium-sensitive component of the circadian clock. Science 311, 1002–1005 (2006).

    Article  CAS  Google Scholar 

  39. Akashi, M., Tsuchiya, Y., Yoshino, T. & Nishida, E. Control of intracellular dynamics of mammalian period proteins by casein kinase I ε (CKIε) and CKIδ in cultured cells. Mol. Cell. Biol. 22, 1693–1703 (2002).

    Article  CAS  Google Scholar 

  40. Yagita, K. et al. Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J. 21, 1301–1314 (2002).

    Article  CAS  Google Scholar 

  41. Cardone, L. et al. Circadian clock control by SUMOylation of BMAL1. Science 309, 1390–1394 (2005).

    Article  CAS  Google Scholar 

  42. Vielhaber, E. L., Duricka, D., Ullman, K. S. & Virshup, D. M. Nuclear export of mammalian PERIOD proteins. J. Biol. Chem. 276, 45921–45927 (2001).

    Article  CAS  Google Scholar 

  43. Ripperger, J. A. & Schibler, U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nature Genet. 38, 369–374 (2006).

    Article  CAS  Google Scholar 

  44. Akhtar, R. A. et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12, 540–550 (2002).

    Article  CAS  Google Scholar 

  45. Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).

    Article  CAS  Google Scholar 

  46. Storch, K. F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78–83 (2002).

    Article  CAS  Google Scholar 

  47. Salghetti, S. E., Caudy, A. A., Chenoweth, J. G. & Tansey, W. P. Regulation of transcriptional activation domain function by ubiquitin. Science 293, 1651–1653 (2001).

    Article  CAS  Google Scholar 

  48. Lee, K., Loros, J. J. & Dunlap, J. C. Interconnected feedback loops in the Neurospora circadian system. Science 289, 107–110 (2000).

    Article  CAS  Google Scholar 

  49. Dunlap, J. C. et al. A circadian clock in Neurospora: how genes and proteins cooperate to produce a sustained, entrainable, and compensated biological oscillator with a period of about a day. Cold Spring Harb. Symp. Quant. Biol. 72, 57–68 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by an intramural Grant-in-Aid from CDB (H.R.U.), the Uehara Memorial Foundation (H.R.U.) and KAKENHI (Grant-in-Aid for Scientific Research) on Priority Areas 'Systems Genomics' from the Ministry of Education, Culture, Sports, Science and Technology of Japan (H.R.U.). We thank Hideki Ukai for critical discussion, Rikuhiro G. Yamada and Tetsuya J. Kobayashi for programming the real-time bioluminescence data analysis, Yuichi Kumaki for the Promoter Database, and Erik A. Kuld, Douglas Sipp and Michael Royle for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.R.U. developed the concept of the proof-by-synthesis of the transcriptional logic underlying mammalian circadian clocks. M.U. constructed all materials used in this work and performed the real-time luminescence assays. T.K. developed the data analysis methods for the in cellulo and in silico data, and conducted these analyses. All the authors discussed the results and commented on the manuscript text.

Corresponding author

Correspondence to Hiroki R. Ueda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4002 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ukai-Tadenuma, M., Kasukawa, T. & Ueda, H. Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nat Cell Biol 10, 1154–1163 (2008). https://doi.org/10.1038/ncb1775

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1775

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing