Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance

Abstract

Proteins essential for vesicle formation by the Coat Protein I (COPI) complex are being identified, but less is known about the role of specific lipids. Brefeldin-A ADP-ribosylated substrate (BARS) functions in the fission step of COPI vesicle formation. Here, we show that BARS induces membrane curvature in cooperation with phosphatidic acid. This finding has allowed us to further delineate COPI vesicle fission into two sub-stages: 1) an earlier stage of bud-neck constriction, in which BARS and other COPI components are required, and 2) a later stage of bud-neck scission, in which phosphatidic acid generated by phospholipase D2 (PLD2) is also required. Moreover, in contrast to the disruption of the Golgi seen on perturbing the core COPI components (such as coatomer), inhibition of PLD2 causes milder disruptions, suggesting that such COPI components have additional roles in maintaining Golgi structure other than through COPI vesicle formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Liposome tubulation by BARS requires phosphatidic acid (PA).
Figure 2: Perturbation of phosphatidic acid generated by PLD2 affects COPI transport.
Figure 3: COPI vesicle formation requires phosphatidic acid generated by PLD2.
Figure 4: PLD2 is required for the late stage of COPI vesicle fission.
Figure 5: Golgi morphology and COPI distribution upon PLD2 depletion.

Similar content being viewed by others

References

  1. Lee, M. C., Miller, E. A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123 (2004).

    Article  CAS  Google Scholar 

  2. Rabouille, C. & Klumperman, J. Opinion: The maturing role of COPI vesicles in intra-Golgi transport. Nature Rev. Mol. Cell Biol. 6, 812–817 (2005).

    Article  CAS  Google Scholar 

  3. Nie, Z., Hirsch, D. S. & Randazzo, P. A. Arf and its many interactors. Curr. Opin. Cell Biol. 15, 396–404 (2003).

    Article  CAS  Google Scholar 

  4. D'Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nature Rev. Mol. Cell Biol. 7, 347–358 (2006).

    Article  CAS  Google Scholar 

  5. Donaldson, J. G., Finazzi, D. & Klausner, R. D. Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360, 350–352 (1992).

    Article  CAS  Google Scholar 

  6. Helms, J. B. & Rothman, J. E. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360, 352–354 (1992).

    Article  CAS  Google Scholar 

  7. Orci, L. et al. Brefeldin A, a drug that blocks secretion, prevents the assembly of non-clathrin-coated buds on Golgi cisternae. Cell 64, 1183–1195 (1991).

    Article  CAS  Google Scholar 

  8. Lippincott-Schwartz, J. et al. Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 60, 821–836 (1990).

    Article  CAS  Google Scholar 

  9. Waters, M. G., Serafini, T. & Rothman, J. E. 'Coatomer': a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349, 248–251 (1991).

    Article  CAS  Google Scholar 

  10. Guo, Q., Vasile, E. & Krieger, M. Disruptions in Golgi structure and membrane traffic in a conditional lethal mammalian cell mutant are corrected by ɛ-COP. J. Cell Biol. 125, 1213–1224 (1994).

    Article  CAS  Google Scholar 

  11. Orci, L., Palmer, D. J., Amherdt, M. & Rothman, J. E. Coated vesicle assembly in the Golgi requires only coatomer and ARF proteins from the cytosol. Nature 364, 732–734 (1993).

    Article  CAS  Google Scholar 

  12. Yang, J. S. et al. ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J. Cell Biol. 159, 69–78 (2002).

    Article  CAS  Google Scholar 

  13. Lee, S. Y., Yang, J. S., Hong, W., Premont, R. T. & Hsu, V. W. ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. J.Cell Biol. 168, 281–290 (2005).

    Article  CAS  Google Scholar 

  14. Yang, J. S. et al. A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO J. 24, 4133–4143 (2005).

    Article  CAS  Google Scholar 

  15. Yang, J. S. et al. Key components of the fission machinery are interchangeable. Nature Cell Biol. 8, 1376–1382 (2006).

    Article  CAS  Google Scholar 

  16. Weigert, R. et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402, 429–433 (1999).

    Article  CAS  Google Scholar 

  17. Gallop, J. L., Butler, P. J. & McMahon, H. T. Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission. Nature 438, 675–678 (2005).

    Article  CAS  Google Scholar 

  18. Farsad, K. & De Camilli, P. Mechanisms of membrane deformation. Curr. Opin. Cell Biol. 15, 372–381 (2003).

    Article  CAS  Google Scholar 

  19. McMahon, H. T. & Gallop, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005).

    Article  CAS  Google Scholar 

  20. Haucke, V. & Di Paolo, G. Lipids and lipid modifications in the regulation of membrane traffic. Curr. Opin. Cell Biol. 19, 426–435 (2007).

    Article  CAS  Google Scholar 

  21. Zimmerberg, J. & Kozlov, M. M. How proteins produce cellular membrane curvature. Nature Rev. Mol. Cell Biol. 7, 9–19 (2006).

    Article  CAS  Google Scholar 

  22. Godi, A. et al. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nature Cell Biol. 6, 393–404 (2004).

    Article  CAS  Google Scholar 

  23. Fernandez-Ulibarri, I. et al. Diacylglycerol is required for the formation of COPI vesicles in the Golgi-to-ER transport pathway. Mol. Biol. Cell 18, 3250–3263 (2007).

    Article  CAS  Google Scholar 

  24. Jenkins, G. M. & Frohman, M. A. Phospholipase D: a lipid centric review. Cell. Mol. Life Sci. 62, 2305–2316 (2005).

    Article  CAS  Google Scholar 

  25. Singer, W. D., Brown, H. A. & Sternweis, P. C. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu. Rev. Biochem. 66, 475–509 (1997).

    Article  CAS  Google Scholar 

  26. Merida, I., Avila-Flores, A. & Merino, E. Diacylglycerol kinases: at the hub of cell signalling. Biochem J. 409, 1–18 (2008).

    Article  CAS  Google Scholar 

  27. Chaffoy de Courcelles, D. C., Roevens, P. & Van Belle, H. R 59 022, a diacylglycerol kinase inhibitor. Its effect on diacylglycerol and thrombin-induced C kinase activation in the intact platelet. J. Biol. Chem. 260, 15762–15770 (1985).

    PubMed  Google Scholar 

  28. Himpens, B., De Smedt, H. & Bollen, M. Modulation of nucleocytosolic [Ca2+] gradient in smooth muscle by protein phosphorylation. FASEB J. 8, 879–883 (1994).

    Article  CAS  Google Scholar 

  29. Freyberg, Z., Bourgoin, S. & Shields, D. Phospholipase D2 is localized to the rims of the Golgi apparatus in mammalian cells. Mol. Biol. Cell 13, 3930–3942 (2002).

    Article  CAS  Google Scholar 

  30. Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200 (2001).

    Article  CAS  Google Scholar 

  31. Lee, M. C. et al. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122, 605–617 (2005).

    Article  CAS  Google Scholar 

  32. Spang, A., Matsuoka, K., Hamamoto, S., Schekman, R. & Orci, L. Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. Proc. Natl Acad. Sci. USA 95, 11199–11204 (1998).

    Article  CAS  Google Scholar 

  33. Reinhard, C., Schweikert, M., Wieland, F. T. & Nickel, W. Functional reconstitution of COPI coat assembly and disassembly using chemically defined components. Proc. Natl Acad. Sci. USA 100, 8253–8257 (2003).

    Article  CAS  Google Scholar 

  34. Bremser, M. et al. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96, 495–506 (1999).

    Article  CAS  Google Scholar 

  35. Bard, F. & Malhotra, V. The formation of TGN-to-plasma-membrane transport carriers. Annu. Rev. Cell Dev. Biol. 22, 439–455 (2006).

    Article  CAS  Google Scholar 

  36. Kitstakis, N. T., Brown, H. A., Waters, M. G., Sternweis, P. C. & Roth, M. G. Evidence that phospholipase D mediates ADP ribosylation factor-dependent formation of Golgi coated vesicles. J. Cell Biol. 134, 295–306 (1996).

    Article  Google Scholar 

  37. Stamnes, M., Schiavo, G., Stenbeck, G., Sollner, T. H. & Rothman, J. E. ADP-ribosylation factor and phosphatidic acid levels in Golgi membranes during budding of coatomer-coated vesicles Proc. Natl Acad. Sci. USA 95, 13676–13680 (1998).

    Article  CAS  Google Scholar 

  38. Serafini, T. et al. ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67, 239–253 (1991).

    Article  CAS  Google Scholar 

  39. Presley, J. F. et al. Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature 417, 187–193 (2002).

    Article  CAS  Google Scholar 

  40. Kweon, H. S. et al. Golgi enzymes are enriched in perforated zones of golgi cisternae but are depleted in COPI vesicles. Mol. Biol. Cell 15, 4710–4724 (2004).

    Article  CAS  Google Scholar 

  41. Freyberg, Z. et al. Intracellular localization of phospholipase D1 in mammalian cells. Mol. Biol. Cell 12, 943–955 (2001).

    Article  CAS  Google Scholar 

  42. Bonazzi, M. et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nature Cell Biol. 7, 570–580 (2005).

    Article  CAS  Google Scholar 

  43. Baldanzi, G. et al. Diacylglycerol kinase-α phosphorylation by Src on Y335 is required for activation, membrane recruitment and Hgf-induced cell motility. Oncogene 27, 942–956 (2008).

    Article  CAS  Google Scholar 

  44. Pathre, P. et al. Activation of phospholipase D by the small GTPase Sar1p is required to support COPII assembly and ER export. EMBO J. 22, 4059–4069 (2003).

    Article  CAS  Google Scholar 

  45. Trucco, A. et al. Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nature Cell Biol. 6, 1071–1081 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jian Li and Ming Bai for advice and discussions, and Richard Premont for technical assistance. This work was funded by grants from the NIH to V.W.H. (GM058615), M.A.F. (GM071520) and G.D. (GM071475), from Telethon (Italy), AIRC (Italy) to A.L. and A.M., and from the Canadian Institutes of Health Research (S.B.). H.G. was supported by a Marie Curie Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were performed mainly by J.S.Y., with help from H.D., S.Y.L., A.M., L.Z., G.V.B., C.V., G.T., A.N.B., G.D., G.B., A.G. and S.B. The project was planned mainly by V.W.H. with help from A.L. and M.A.H. All authors participated in data analysis.

Corresponding author

Correspondence to Victor W. Hsu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6, S7, S8, S9 and Supplementary Table 1 (PDF 1100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, JS., Gad, H., Lee, S. et al. A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nat Cell Biol 10, 1146–1153 (2008). https://doi.org/10.1038/ncb1774

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1774

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing