Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus

Abstract

The organelles within secretory and endocytotic pathways in mammalian cells have acidified lumens, and regulation of their acidic pH is critical for the trafficking, processing and glycosylation of cargo proteins and lipids, as well as the morphological integrity of the organelles. How organelle lumen acidification is regulated, and how luminal pH elevation disturbs these fundamental cellular processes, is largely unknown. Here, we describe a novel molecule involved in Golgi acidification. First, mutant cells defective in Golgi acidification were established that exhibited delayed protein transport, impaired glycosylation and Golgi disorganization. Using expression cloning, a novel Golgi-resident multi-transmembrane protein, named Golgi pH regulator (GPHR), was identified as being responsible for the mutant cells. After reconstitution in planar lipid bilayers, GPHR exhibited a voltage-dependent anion-channel activity that may function in counterion conductance. Thus, GPHR modulates Golgi functions through regulation of acidification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Delayed transport of newly synthesized proteins in mutant cells.
Figure 2: Impaired glycosylation and Golgi disorganization in mutant cells.
Figure 3: GPHR is responsible for the defective phenotypes in C27 cells.
Figure 4: Impaired luminal acidification of the Golgi is the primary defect in C27 cells.
Figure 5: GPHR is mainly localized at the Golgi.
Figure 6: GPHR is an anion channel.
Figure 7: Trimeric GPHR channel helps V-ATPase to acidify the Golgi lumen.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Weisz, O. A. Organelle acidification and disease. Traffic 4, 57–64 (2003).

    Article  CAS  Google Scholar 

  2. Tartakoff, A., Vassalli, P. & Detraz, M. Comparative studies of intracellular transport of secretory proteins. J. Cell Biol. 79, 694–707 (1978).

    Article  CAS  Google Scholar 

  3. Palokangas, H., Metsikko, K. & Vaananen, K. Active vacuolar H+ATPase is required for both endocytic and exocytic processes during viral infection of BHK-21 cells. J. Biol. Chem. 269, 17577–17585 (1994).

    CAS  PubMed  Google Scholar 

  4. Presley, J. F., Mayor, S., McGraw, T. E., Dunn, K. W. & Maxfield, F. R. Bafilomycin A1 treatment retards transferrin receptor recycling more than bulk membrane recycling. J. Biol. Chem. 272, 13929–13936 (1997).

    Article  CAS  Google Scholar 

  5. Axelsson, M. A. et al. Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O-glycosylation of mucins. Glycobiology 11, 633–644 (2001).

    Article  CAS  Google Scholar 

  6. Rivinoja, A., Kokkonen, N., Kellokumpu, I. & Kellokumpu, S. Elevated Golgi pH in breast and colorectal cancer cells correlates with the expression of oncofetal carbohydrate T-antigen. J. Cell. Physiol. 208, 167–174 (2006).

    Article  CAS  Google Scholar 

  7. Puri, S., Bachert, C., Fimmel, C. J. & Linstedt, A. D. Cycling of early Golgi proteins via the cell surface and endosomes upon lumenal pH disruption. Traffic 3, 641–653 (2002).

    Article  CAS  Google Scholar 

  8. Chapman, R. E. & Munro, S. Retrieval of TGN proteins from the cell surface requires endosomal acidification. EMBO J. 13, 2305–2312 (1994).

    Article  CAS  Google Scholar 

  9. Reaves, B. & Banting, G. Vacuolar ATPase inactivation blocks recycling to the trans-Golgi network from the plasma membrane. FEBS Lett. 345, 61–66 (1994).

    Article  CAS  Google Scholar 

  10. Kellokumpu, S., Sormunen, R. & Kellokumpu, I. Abnormal glycosylation and altered Golgi structure in colorectal cancer: dependence on intra-Golgi pH. FEBS Lett. 516, 217–224 (2002).

    Article  CAS  Google Scholar 

  11. Weisz, O. A. Acidification and protein traffic. Int. Rev. Cytol. 226, 259–319 (2003).

    Article  CAS  Google Scholar 

  12. Stobrawa, S. M. et al. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29, 185–196 (2001).

    Article  CAS  Google Scholar 

  13. Piwon, N., Gunther, W., Schwake, M., Bosl, M. R. & Jentsch, T. J. ClC-5 Cl- -channel disruption impairs endocytosis in a mouse model for Dent's disease. Nature 408, 369–373 (2000).

    Article  CAS  Google Scholar 

  14. Andresson, T., Sparkowski, J., Goldstein, D. J. & Schlegel, R. Vacuolar H+-ATPase mutants transform cells and define a binding site for the papillomavirus E5 oncoprotein. J. Biol. Chem. 270, 6830–6837 (1995).

    Article  CAS  Google Scholar 

  15. Moriyama, Y. & Nelson, N. H+-translocating ATPase in Golgi apparatus. Characterization as vacuolar H+-ATPase and its subunit structures. J. Biol. Chem. 264, 18445–18450 (1989).

    CAS  PubMed  Google Scholar 

  16. Glickman, J., Croen, K., Kelly, S. & Al-Awqati, Q. Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance. J. Cell Biol. 97, 1303–1308 (1983).

    Article  CAS  Google Scholar 

  17. Xie, X. S., Stone, D. K. & Racker, E. Determinants of clathrin-coated vesicle acidification. J. Biol. Chem. 258, 14834–14838 (1983).

    CAS  PubMed  Google Scholar 

  18. Hara-Chikuma, M. et al. ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. J. Biol. Chem. 280, 1241–1247 (2005).

    Article  CAS  Google Scholar 

  19. Grabe, M. & Oster, G. Regulation of organelle acidity. J. Gen. Physiol. 117, 329–344 (2001).

    Article  CAS  Google Scholar 

  20. Llopis, J., McCaffery, J. M., Miyawaki, A., Farquhar, M. G. & Tsien, R. Y. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl Acad. Sci. USA 95, 6803–6808 (1998).

    Article  CAS  Google Scholar 

  21. Schapiro, F. B. & Grinstein, S. Determinants of the pH of the Golgi complex. J. Biol. Chem. 275, 21025–21032 (2000).

    Article  CAS  Google Scholar 

  22. Wu, M. M. et al. Organelle pH studies using targeted avidin and fluorescein-biotin. Chem. Biol. 7, 197–209 (2000).

    Article  CAS  Google Scholar 

  23. Wu, M. M. et al. Mechanisms of pH regulation in the regulated secretory pathway. J. Biol. Chem. 276, 33027–33035 (2001).

    Article  CAS  Google Scholar 

  24. Demaurex, N., Furuya, W., D'Souza, S., Bonifacino, J. S. & Grinstein, S. Mechanism of acidification of the trans-Golgi network (TGN). In situ measurements of pH using retrieval of TGN38 and furin from the cell surface. J. Biol. Chem. 273, 2044–2051 (1998).

    Article  CAS  Google Scholar 

  25. Nishi, T. & Forgac, M. The vacuolar H+-ATPases — nature's most versatile proton pumps. Nature Rev. Mol. Cell Biol. 3, 94–103 (2002).

    Article  CAS  Google Scholar 

  26. Pusch, M., Zifarelli, G., Murgia, A. R., Picollo, A. & Babini, E. Channel or transporter? The CLC saga continues. Exp. Physiol. 91, 149–152 (2006).

    Article  CAS  Google Scholar 

  27. Jentsch, T. J. Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters. J. Physiol. 578, 633–640 (2007).

    Article  CAS  Google Scholar 

  28. Duncan, R. R., Westwood, P. K., Boyd, A. & Ashley, R. H. Rat brain p64H1, expression of a new member of the p64 chloride channel protein family in endoplasmic reticulum. J. Biol. Chem. 272, 23880–23886 (1997).

    Article  CAS  Google Scholar 

  29. Nagasawa, M., Kanzaki, M., Iino, Y., Morishita, Y. & Kojima, I. Identification of a novel chloride channel expressed in the endoplasmic reticulum, golgi apparatus, and nucleus. J. Biol. Chem. 276, 20413–20418 (2001).

    Article  CAS  Google Scholar 

  30. Nordeen, M. H., Jones, S. M., Howell, K. E. & Caldwell, J. H. GOLAC: an endogenous anion channel of the Golgi complex. Biophys. J. 78, 2918–2928 (2000).

    Article  CAS  Google Scholar 

  31. Thompson, R. J., Nordeen, M. H., Howell, K. E. & Caldwell, J. H. A large-conductance anion channel of the Golgi complex. Biophys. J. 83, 278–289 (2002).

    Article  CAS  Google Scholar 

  32. Hara-Chikuma, M., Wang, Y., Guggino, S. E., Guggino, W. B. & Verkman, A. S. Impaired acidification in early endosomes of ClC-5 deficient proximal tubule. Biochem. Biophys. Res. Commun. 329, 941–946 (2005).

    Article  CAS  Google Scholar 

  33. Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  CAS  Google Scholar 

  34. Kim, J. H. et al. Dynamic measurement of the pH of the Golgi complex in living cells using retrograde transport of the verotoxin receptor. J. Cell Biol. 134, 1387–1399 (1996).

    Article  CAS  Google Scholar 

  35. Farinas, J. & Verkman, A. S. Receptor-mediated targeting of fluorescent probes in living cells. J. Biol. Chem. 274, 7603–7606 (1999).

    Article  CAS  Google Scholar 

  36. Yamashiro, D. J. & Maxfield, F. R. Acidification of morphologically distinct endosomes in mutant and wild-type Chinese hamster ovary cells. J. Cell Biol. 105, 2723–2733 (1987).

    Article  CAS  Google Scholar 

  37. Paroutis, P., Touret, N. & Grinstein, S. The pH of the secretory pathway: measurement, determinants, and regulation. Physiology 19, 207–215 (2004).

    Article  CAS  Google Scholar 

  38. Johnson, L. S., Dunn, K. W., Pytowski, B. & McGraw, T. E. Endosome acidification and receptor trafficking: bafilomycin A1 slows receptor externalization by a mechanism involving the receptor's internalization motif. Mol. Biol. Cell 4, 1251–1266 (1993).

    Article  CAS  Google Scholar 

  39. Laver, D. R. & Peter, W. G. Interpretation of substates in ion channels: unipores or multipores? Prog. Biophys Mol. Biol. 67, 99–140 (1997).

    Article  CAS  Google Scholar 

  40. Scheel, O., Zdebik, A. A., Lourdel, S. & Jentsch, T. J. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436, 424–427 (2005).

    Article  CAS  Google Scholar 

  41. Graves, A. R., Curran, P. K., Smith, C.L. & Mindell, J.A. The Cl/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453, 788–792 (2008).

    Article  CAS  Google Scholar 

  42. Wright, E. M. & Diamond, J. M. Anion selectivity in biological systems. Physiol Rev. 57, 109–156 (1977).

    Article  CAS  Google Scholar 

  43. Koike, M. et al. Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J. Neurosci. 20, 6898–6906 (2000).

    Article  CAS  Google Scholar 

  44. Ide, T. & Yanagida, T. An artificial lipid bilayer formed on an agarose-coated glass for simultaneous electrical and optical measurement of single ion channels. Biochem. Biophys. Res. Commun. 265, 595–599 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Mori and K. Kinoshita for excellent technical assistance, and K. Nakamura for help with the cell sorting. We also thank T. Yoshimori, S. Kimura and H. Oomori for allowing us to use confocal and electron microscopes and for technical direction, and H. Hibino, H. Takeshima and T. Yamazaki for helpful discussions. This work was supported by grants from the Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency (Y.M.), the Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (T.K.) and the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

T.I. performed the planar lipid-bilayer analyses. M.K. and Y.U. performed the electron microscopy analyses. Y.M. performed the other experiments. T.K. and Y.M. contributed to the planning of experiments and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yusuke Maeda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6, S7, S8, Supplementary Materials and Methods (PDF 2164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeda, Y., Ide, T., Koike, M. et al. GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus. Nat Cell Biol 10, 1135–1145 (2008). https://doi.org/10.1038/ncb1773

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1773

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing