Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency

A Corrigendum to this article was published on 30 May 2012

This article has been updated

Abstract

Expression of p16Ink4a and p19Arf increases with age in both rodent and human tissues. However, whether these tumour suppressors are effectors of ageing remains unclear, mainly because knockout mice lacking p16Ink4a or p19Arf die early of tumours. Here, we show that skeletal muscle and fat, two tissues that develop early ageing-associated phenotypes in response to BubR1 insufficiency, have high levels of p16Ink4a and p19Arf. Inactivation of p16Ink4a in BubR1-insufficient mice attenuates both cellular senescence and premature ageing in these tissues. Conversely, p19Arf inactivation exacerbates senescence and ageing in BubR1 mutant mice. Thus, we identify BubR1 insufficiency as a trigger for activation of the Cdkn2a locus in certain mouse tissues, and demonstrate that p16Ink4a is an effector and p19Arf an attenuator of senescence and ageing in these tissues.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Ablation of p16Ink4a in BubR1H/H mice extends lifespan and attenuates sarcopaenia.
Figure 2: Inverse correlation between BubR1 and p16Ink4a expression levels with ageing.
Figure 3: p16Ink4a disruption attenuates selective progeroid features of BubR1 hypomorphic mice.
Figure 4: p16Ink4a induction in BubR1H/H mice promotes cellular senescence.
Figure 5: p19Arf is elevated in BubR1 hypomorphic tissues with high p16Ink4a.
Figure 6: Accelerated ageing in BubR1H/H mouse tissues with increased p16Ink4a expression when p19Arf is lacking.
Figure 7: Senescence increases in BubR1H/H tissues with high p16Ink4a when p19Arf is lacking.
Figure 8: Ablation of p16Ink4a accelerates lung tumorigenesis in BubR1 insufficient mice.

Change history

  • 27 April 2012

    In the version of this Article originally published, an initial was omitted for Kevin Pitel. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007).

    Article  CAS  Google Scholar 

  2. Campisi, J. & d'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nature Rev. Mol. Cell Biol. 8, 729–740 (2007).

    Article  CAS  Google Scholar 

  3. Sharpless, N. E. & DePinho, R. A. The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev. 9, 22–30 (1999).

    Article  CAS  Google Scholar 

  4. Sherr, C. J. & Weber, J. D. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99 (2000).

    Article  CAS  Google Scholar 

  5. Vousden, K. H. & Lane, D. P. p53 in health and disease. Nature Rev. Mol. Cell Biol. 8, 275–283 (2007).

    Article  CAS  Google Scholar 

  6. Kim, W. Y. & Sharpless, N. E. The regulation of INK4/ARF in cancer and aging. Cell 127, 265–275 (2006).

    Article  CAS  Google Scholar 

  7. Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).

    Article  CAS  Google Scholar 

  8. Zindy, F., Quelle, D. E., Roussel, M. F. & Sherr, C. J. Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15, 203–211 (1997).

    Article  CAS  Google Scholar 

  9. Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

    Article  CAS  Google Scholar 

  10. Janzen, V. et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443, 421–426 (2006).

    Article  CAS  Google Scholar 

  11. Molofsky, A. V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443, 448–452 (2006).

    Article  CAS  Google Scholar 

  12. Beausejour, C. M. & Campisi, J. Ageing: balancing regeneration and cancer. Nature 443, 404–405 (2006).

    Article  CAS  Google Scholar 

  13. Baker, D. J. et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nature Genet. 36, 744–749 (2004).

    Article  CAS  Google Scholar 

  14. Matsumoto, T. et al. Aging-associated vascular phenotype in mutant mice with low levels of BubR1. Stroke 38, 1050–1056 (2007).

    Article  CAS  Google Scholar 

  15. Hartman, T. K., Wengenack, T. M., Poduslo, J. F. & van Deursen, J. M. Mutant mice with small amounts of BubR1 display accelerated age-related gliosis. Neurobiol. Aging 28, 921–927 (2007).

    Article  CAS  Google Scholar 

  16. Baker, D. J. et al. Early aging-associated phenotypes in Bub3/Rae1 haploinsufficient mice. J. Cell Biol. 172, 529–540 (2006).

    Article  CAS  Google Scholar 

  17. Rane, S. G. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nature Genet. 22, 44–52 (1999).

    Article  CAS  Google Scholar 

  18. Sharpless, N. E. & DePinho, R. A. How stem cells age and why this makes us grow old. Nature Rev. Mol. Cell Biol. 8, 703–713 (2007).

    Article  CAS  Google Scholar 

  19. Price, S. R. & Mitch, W. E. Mechanisms stimulating protein degradation to cause muscle atrophy. Curr. Opin. Clin. Nutr. Metab. Care 1, 79–83 (1998).

    Article  CAS  Google Scholar 

  20. Koh, T. J., Bryer, S. C., Pucci, A. M. & Sisson, T. H. Mice deficient in plasminogen activator inhibitor-1 have improved skeletal muscle regeneration. Am. J. Physiol. Cell Physiol. 289, C217–C223 (2005).

    Article  CAS  Google Scholar 

  21. Fridlyand, J. et al. Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 6, 96 (2006).

  22. Hengstschlager, M. et al. Loss of the p16/MTS1 tumor suppressor gene causes E2F-mediated deregulation of essential enzymes of the DNA precursor metabolism. DNA Cell Biol. 15, 41–51 (1996).

    Article  CAS  Google Scholar 

  23. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  Google Scholar 

  24. West, M. D., Pereira-Smith, O. M. & Smith, J. R. Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Exp. Cell Res. 184, 138–147 (1989).

    Article  CAS  Google Scholar 

  25. Wang, S., Moerman, E. J., Jones, R. A., Thweatt, R. & Goldstein, S. Characterization of IGFBP-3, PAI-1 and SPARC mRNA expression in senescent fibroblasts. Mech. Ageing Dev. 92, 121–132 (1996).

    Article  CAS  Google Scholar 

  26. Shelton, D. N., Chang, E., Whittier, P. S., Choi, D. & Funk, W. D. Microarray analysis of replicative senescence. Curr. Biol. 9, 939–945 (1999).

    Article  CAS  Google Scholar 

  27. Linskens, M. H. et al. Cataloging altered gene expression in young and senescent cells using enhanced differential display. Nucleic Acids Res. 23, 3244–3251 (1995).

    Article  CAS  Google Scholar 

  28. Matheu, A. et al. Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448, 375–379 (2007).

    Article  CAS  Google Scholar 

  29. Serrano, M. & Blasco, M. A. Cancer and ageing: convergent and divergent mechanisms. Nature Rev. Mol. Cell Biol. 8, 715–722 (2007).

    Article  CAS  Google Scholar 

  30. Varela, I. et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437, 564–568 (2005).

    Article  CAS  Google Scholar 

  31. Cao, L., Li, W., Kim, S., Brodie, S. G. & Deng, C. X. Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev. 17, 201–213 (2003).

    Article  CAS  Google Scholar 

  32. Kondratov, R. V., Kondratova, A. A., Gorbacheva, V. Y., Vykhovanets, O. V. & Antoch, M. P. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 20, 1868–1873 (2006).

    Article  CAS  Google Scholar 

  33. Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 86–91. (2001).

    Article  CAS  Google Scholar 

  34. Sharpless, N. E., Ramsey, M. R., Balasubramanian, P., Castrillon, D. H. & DePinho, R. A. The differential impact of p16(INK4a) or p19(ARF) deficiency on cell growth and tumorigenesis. Oncogene 23, 379–385 (2004).

    Article  CAS  Google Scholar 

  35. Engel, W. K. & Cunningham, G. G. Rapid examination of muscle tissue. an improved trichrome method for fresh-frozen biopsy sections. Neurology 13, 919–923 (1963).

    Article  CAS  Google Scholar 

  36. Kane, G. C. et al. ATP-sensitive K+ channel knockout compromises the metabolic benefit of exercise training, resulting in cardiac deficits. Diabetes 53 Suppl 3, S169–S175 (2004).

    Article  CAS  Google Scholar 

  37. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    Article  CAS  Google Scholar 

  38. Krimpenfort, P. et al. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 448, 943–946 (2007).

    Article  CAS  Google Scholar 

  39. Edwards, M. G. et al. Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program. BMC Genomics 8, 80 (2007).

  40. Yuan, B. et al. Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin. Cancer Res. 12, 405–410 (2006).

    Article  CAS  Google Scholar 

  41. Maes, C. et al. Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J. Clin. Invest. 113, 188–199 (2004).

    Article  CAS  Google Scholar 

  42. Asahi, M. et al. Protective effects of statins involving both eNOS and tPA in focal cerebral ischemia. J. Cereb. Blood Flow Metab. 25, 722–729 (2005).

    Article  CAS  Google Scholar 

  43. Ohlson, N., Bergh, A., Persson, M. L. & Wikstrom, P. Castration rapidly decreases local insulin-like growth factor-1 levels and inhibits its effects in the ventral prostate in mice. Prostate 66, 1687–1697 (2006).

    Article  CAS  Google Scholar 

  44. Jeong, Y. J. et al. Optimization of real time RT–PCR methods for the analysis of gene expression in mouse eggs and preimplantation embryos. Mol. Reprod. Dev. 71, 284–289 (2005).

    Article  CAS  Google Scholar 

  45. Beauchamp, J. R., Morgan, J. E., Pagel, C. N. & Partridge, T. A. Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J. Cell Biol. 144, 1113–1122 (1999).

    Article  CAS  Google Scholar 

  46. Yamada, S. et al. Protection conferred by myocardial ATP-sensitive K+ channels in pressure overload-induced congestive heart failure revealed in KCNJ11 Kir6.2-null mutant. J. Physiol. 577, 1053–1065 (2006).

    Article  CAS  Google Scholar 

  47. Babu, J. R. et al. Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. J. Cell Biol. 160, 341–353 (2003).

    Article  CAS  Google Scholar 

  48. Kasper, L. H. et al. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol. Cell Biol. 19, 764–776 (1999).

    Article  CAS  Google Scholar 

  49. Latres, E. et al. Limited overlapping roles of P15(INK4b) and P18(INK4c) cell cycle inhibitors in proliferation and tumorigenesis. EMBO J. 19, 3496–3506 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Paul Galardy, Rick Bram, Randy Faustino, Amy Tang, Robin Ricke and Jim Kirkland for critical reading of the manuscript or helpful discussions. We would like to thank Mariano Barbacid for the generous gift of anti-p15Ink4b antibody. This work was supported by grants from the National Institutes of Health, the Ted Nash Foundation and the Ellison Medical Foundation to J.v.D.

Author information

Authors and Affiliations

Authors

Contributions

D.J.B., C.P.T., F.J., K.P., N.J.N., K.J., S.Y., S.R., L.R., H.J.H. and N.L.E. conducted experiments, prepared the figures and analysed the data; D.J.B., A.T. and J.M.v.D. planned the project and wrote the manuscript; J.M.v.D. supervised the project.

Corresponding author

Correspondence to Jan M. van Deursen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6, Supplementary Table S1 and Discussion (PDF 1768 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baker, D., Perez-Terzic, C., Jin, F. et al. Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat Cell Biol 10, 825–836 (2008). https://doi.org/10.1038/ncb1744

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing