Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The type I TGF-β receptor is covalently modified and regulated by sumoylation

Abstract

Post-translational sumoylation, the covalent attachment of a small ubiquitin-like modifier (SUMO), regulates the functions of proteins engaged in diverse processes. Often associated with nuclear and perinuclear proteins, such as transcription factors, it is not known whether SUMO can conjugate to cell-surface receptors for growth factors to regulate their functions. Here we show that the type I transforming growth factor-β (TGF-β) receptor, TβRI, is sumoylated in response to TGF-β and that its sumoylation requires the kinase activities of both TβRI and the type II TGF-β receptor, TβRII. Sumoylation of TβRI enhances receptor function by facilitating the recruitment and phosphorylation of Smad3, consequently regulating TGF-β-induced transcription and growth inhibition. TβRI sumoylation modulates the dissemination of transformed cells in a mouse model of TβRI-stimulated metastasis. TβRI sumoylation therefore controls responsiveness to TGF-β, with implications for tumour progression. Sumoylation of cell-surface receptors may regulate other growth factor responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The type I TGF-β receptor TβRI is sumoylated.
Figure 2: The kinase activities of TβRI and TβRII are required for TβRI sumoylation.
Figure 3: The TβRI receptor is sumoylated on Lys 389.
Figure 4: TβRI sumoylation regulates Smad activation and TGF-β responses.
Figure 5: Lack of TβRI sumoylation decreases TGF-β-regulated invasion and metastasis.
Figure 6: The Ser385Tyr mutation impairs TβRI sumoylation and function.

Similar content being viewed by others

References

  1. Feng, X. H. & Derynck, R. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005).

    Article  CAS  Google Scholar 

  2. Massagué, J., Seoane, J. & Wotton, D. Smad transcription factors. Genes Dev. 19, 2783–2810 (2005).

    Article  Google Scholar 

  3. Izzi, L. & Attisano, L. Ubiquitin-dependent regulation of TGFβ signaling in cancer. Neoplasia 8, 677–688 (2006).

    Article  CAS  Google Scholar 

  4. Kavsak, P. et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol. Cell 6, 1365–1375 (2000).

    Article  CAS  Google Scholar 

  5. Ebisawa, T. et al. Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation. J. Biol. Chem. 276, 12477–12480 (2001).

    Article  CAS  Google Scholar 

  6. Kuratomi, G. et al. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-β (transforming growth factor-β) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-β type I receptor. Biochem. J. 386, 461–470 (2005).

    Article  CAS  Google Scholar 

  7. Komuro, A. et al. Negative regulation of transforming growth factor-β (TGF-β) signaling by WW domain-containing protein 1 (WWP1). Oncogene 23, 6914–6923 (2004).

    Article  CAS  Google Scholar 

  8. Wieser, R., Wrana, J. L. & Massagué, J. GS domain mutations that constitutively activate TβR-I, the downstream signaling component in the TGF-β receptor complex. EMBO J. 14, 2199–2208 (1995).

    Article  CAS  Google Scholar 

  9. Feng, X. H. & Derynck, R. Ligand-independent activation of transforming growth factor (TGF) β signaling pathways by heteromeric cytoplasmic domains of TGF-β receptors. J. Biol. Chem. 271, 13123–13129 (1996).

    Article  CAS  Google Scholar 

  10. Johnson, E. S. Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382 (2004).

    Article  CAS  Google Scholar 

  11. Goto, D. et al. A single missense mutant of Smad3 inhibits activation of both Smad2 and Smad3, and has a dominant negative effect on TGF-β signals. FEBS Lett. 430, 201–204 (1998).

    Article  CAS  Google Scholar 

  12. Larsson, J. et al. Abnormal angiogenesis but intact hematopoietic potential in TGF-β type I receptor-deficient mice. EMBO J. 20, 1663–1673 (2001).

    Article  CAS  Google Scholar 

  13. Levy, L. & Hill, C. S. Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 17, 41–58 (2006).

    Article  CAS  Google Scholar 

  14. Derynck, R., Akhurst, R. J. & Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nature Genet. 29, 117–129 (2001).

    Article  CAS  Google Scholar 

  15. Oft, M., Heider, K. H. & Beug, H. TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol. 8, 1243–1252 (1998).

    Article  CAS  Google Scholar 

  16. Oft, M., Akhurst, R. J. & Balmain, A. Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nature Cell Biol. 4, 487–494 (2002).

    Article  CAS  Google Scholar 

  17. Chen, T., Carter, D., Garrigue-Antar, L. & Reiss, M. Transforming growth factor β type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res. 58, 4805–4810 (1998).

    CAS  PubMed  Google Scholar 

  18. Chen, T. et al. Novel inactivating mutations of transforming growth factor-β type I receptor gene in head-and-neck cancer metastases. Int. J. Cancer 93, 653–661 (2001).

    Article  CAS  Google Scholar 

  19. Rajan, S., Plant, L. D., Rabin, M. L., Butler, M. H. & Goldstein, S. A. Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell 121, 37–47 (2005).

    Article  CAS  Google Scholar 

  20. Benson, M. D. et al. SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5. Proc. Natl Acad. Sci. USA 104, 1805–1810 (2007).

    Article  CAS  Google Scholar 

  21. Martin, S., Nishimune, A., Mellor, J. R. & Henley, J. M. SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature 447, 321–325 (2007).

    Article  CAS  Google Scholar 

  22. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    Article  CAS  Google Scholar 

  23. Bode, A. M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nature Rev. Cancer 4, 793–805 (2004).

    Article  CAS  Google Scholar 

  24. Grönroos, E., Hellman, U., Heldin, C. H. & Ericsson, J. Control of Smad7 stability by competition between acetylation and ubiquitination. Mol. Cell 10, 483–493 (2002).

    Article  Google Scholar 

  25. Hietakangas, V. et al. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl Acad. Sci. USA 103, 45–50 (2006).

    Article  CAS  Google Scholar 

  26. Rodriguez, M. S. et al. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18, 6455–6461 (1999).

    Article  CAS  Google Scholar 

  27. Buschmann, T., Fuchs, S. Y., Lee, C. G., Pan, Z. Q. & Ronai, Z. SUMO-1 modification of Mdm2 prevents its self-ubiquitylation and increases Mdm2 ability to ubiquitinate p53. Cell 101, 753–762 (2000).

    Article  CAS  Google Scholar 

  28. Schmidt, D. & Müller, S. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl Acad. Sci. USA 99, 2872–2877 (2002).

    Article  CAS  Google Scholar 

  29. Bies, J., Markus, J. & Wolff, L. Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. J. Biol. Chem. 277, 8999–9009 (2002).

    Article  CAS  Google Scholar 

  30. Kim, J. H. et al. Roles of sumoylation of a reptin chromatin-remodelling complex in cancer metastasis. Nature Cell Biol. 8, 631–639 (2006).

    Article  CAS  Google Scholar 

  31. Dore, J. J. Jr et al. Mechanisms of transforming growth factor-β receptor endocytosis and intracellular sorting differ between fibroblasts and epithelial cells. Mol. Biol. Cell 12, 675–684 (2001).

    Article  CAS  Google Scholar 

  32. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  CAS  Google Scholar 

  33. Lee, P. S., Chang, C., Liu, D. & Derynck, R. Sumoylation of Smad4, the common Smad mediator of transforming growth factor-β family signaling. J. Biol. Chem. 278, 27853–27863 (2003).

    Article  CAS  Google Scholar 

  34. Feng, X. H., Filvaroff, E. H. & Derynck, R. Transforming growth factor-β (TGF-β)-induced down-regulation of cyclin A expression requires a functional TGF-β receptor complex. Characterization of chimeric and truncated type I and type II receptors. J. Biol. Chem. 270, 24237–24245 (1995).

    Article  CAS  Google Scholar 

  35. Miller, A. D. & Rosman, G. J. Improved retroviral vectors for gene transfer and expression. Biotechniques 7, 980–982, 984–986, 989–990 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Johnson, R., Spiegelman, B., Hanahan, D. & Wisdom, R. Cellular transformation and malignancy induced by ras require c-jun. Mol. Cell. Biol. 16, 4504–4511 (1996).

    Article  CAS  Google Scholar 

  37. ten Dijke, P. et al. Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene 8, 2879–2887 (1993).

    CAS  PubMed  Google Scholar 

  38. ten Dijke, P. et al. Characterization of type I receptors for transforming growth factor-β and activin. Science 264, 101–104 (1994).

    Article  CAS  Google Scholar 

  39. Feng, X. H., Zhang, Y., Wu, R. Y. & Derynck, R. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-β-induced transcriptional activation. Genes Dev. 12, 2153–2163 (1998).

    Article  CAS  Google Scholar 

  40. Graycar, J. L. et al. Human transforming growth factor-β3: recombinant expression, purification, and biological activities in comparison with transforming growth factors-β1 and -β2. Mol. Endocrinol. 3, 1977–1986 (1989).

    Article  CAS  Google Scholar 

  41. Dennler, S. et al. Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 17, 3091–3100 (1998).

    Article  CAS  Google Scholar 

  42. Kang, J. S., Alliston, T., Delston, R. & Derynck, R. Repression of Runx2 function by TGF-β through recruitment of class II histone deacetylases by Smad3. EMBO J. 24, 2543–2555 (2005).

    Article  CAS  Google Scholar 

  43. Choy, L., Skillington, J. & Derynck, R. Roles of autocrine TGF-β receptor and Smad signaling in adipocyte differentiation. J. Cell Biol. 149, 667–682 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants RO1-CA63101 and R21-CA125190 to R.D. and PO1 AR050440 and RO1s CA116019 and HL078564 to R.J.A. from the National Institutes of Health, and a Scientist Development grant 0630322N to J.S.K. from the American Heart Association.

Author information

Authors and Affiliations

Authors

Contributions

J.S.K., R.J.A. and R.D. conceived and designed the studies; J.S.K. and E.F.S. performed the experiments; J.S.K., E.F.S., R.J.A. and R.D. prepared the manuscript.

Corresponding author

Correspondence to Rik Derynck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 (PDF 568 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J., Saunier, E., Akhurst, R. et al. The type I TGF-β receptor is covalently modified and regulated by sumoylation. Nat Cell Biol 10, 654–664 (2008). https://doi.org/10.1038/ncb1728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1728

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing