Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis


Gibberellins (GAs) are key regulators of plant growth and development. They promote growth by targeting the degradation of DELLA repressor proteins; however, their site of action at the cellular, tissue or organ levels remains unknown. To map the site of GA action in regulating root growth, we expressed gai, a non-degradable, mutant DELLA protein, in selected root tissues. Root growth was retarded specifically when gai was expressed in endodermal cells. Our results demonstrate that the endodermis represents the primary GA-responsive tissue regulating organ growth and that endodermal cell expansion is rate-limiting for elongation of other tissues and therefore of the root as a whole.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Expressing gai in the Arabidopsis root endodermis disrupts organ growth.
Figure 2: Root-cell morphology is disrupted when gai is expressed in the endodermis.


  1. Fleet, C. M. & Sun, T. P. Curr. Opin. Plant Biol. 8, 77–85 (2005).

    CAS  Article  Google Scholar 

  2. Peng, J. et al. Nature 400, 256–261 (1999).

    CAS  Article  Google Scholar 

  3. Silverstone, A. L. et al. Plant Cell 13, 1555–1565 (2001).

    CAS  Article  Google Scholar 

  4. Peng, J. et al. Genes Dev. 11, 3194–3205 (1997).

    CAS  Article  Google Scholar 

  5. King, K. E., Moritz, T. & Harberd, N. P. Genetics 159, 767–776 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dill, A. & Sun, T. P. Genetics 159, 777–785 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng, H. et al. Development 131, 1055–1064 (2004).

    CAS  Article  Google Scholar 

  8. Ueguchi-Tanaka, M. et al. Nature 437, 693–698 (2005).

    CAS  Article  Google Scholar 

  9. Nakajima, M., et al. Plant J. 46, 880–889 (2006).

    CAS  Article  Google Scholar 

  10. Griffiths, J. et al. Plant Cell 18, 3399–3414 (2006).

    CAS  Article  Google Scholar 

  11. Willige, B. C. et al. Plant Cell 19, 1209–1220 (2007).

    CAS  Article  Google Scholar 

  12. Ueguchi-Tanaka, M. et al. Plant Cell 19, 2140–2155 (2007).

    CAS  Article  Google Scholar 

  13. Fu, X. et al. Plant Cell 14, 3191–3200 (2002).

    CAS  Article  Google Scholar 

  14. Dill, A. et al. Plant Cell 16, 1392–1405 (2004).

    CAS  Article  Google Scholar 

  15. Fu, X. & Harberd, N. P. Nature 421, 740–743 (2003).

    CAS  Article  Google Scholar 

  16. Beemster, G. T. S, and Baskin, T. Plant Physiol. 124, 1718–1727 (2000).

    CAS  Article  Google Scholar 

  17. Swarup, R. et al. Nature Cell Biol. 7, 1057–1065 (2005).

    CAS  Article  Google Scholar 

  18. Wysocka-Diller, J. W. et al. Development 127, 595–603 (2000).

    CAS  PubMed  Google Scholar 

Download references


We would like to thank Nick Harberd, Mikael Norberg and Philip Benfey for providing plasmids containing the gai, GAI and GR sequences, respectively, and the Nottingham Arabidopsis Stock Centre (NASC) for providing selected GAL4 enhancer trap lines used in this study. We also wish to thank Ilda Casimiro, Eric Kramer, Nick Harberd, Andy Phillips, Steve Thomas and both anonymous referees for providing helpful feedback about the manuscript. We acknowledge the support of the Biotechnology and Biological Sciences Research Council (S. U.-T., J. C., R. S., K. S., P. H. and M. J. B.); BBSRC/EPSRC CISB programme funding (S. U.-T. and M. J. B.); Belgian Scientific policy (BELSPO contract BARN to G. T. S. and M. J. B.); Gatsby Charitable Foundation (J. C., M. J. B.); the Institut de Recherche pour le Dévelopement (L. L.); British Council/Egide Alliance Grant No. 05752SM (to L. L. and M. J. B.). The work in the lab of R. P. B. was supported by Vetenskapsrådet and FORMAS. R. B. would like to thank David Söderstöm for technical help.

Author information

Authors and Affiliations



S. U. B. designed experiments and wrote the paper; S. U. B., R. S., J. C., K. S., L. L. and G. T. S. B. performed the research; G. T. S. B. and P. H. contributed through conceptual discussions about the role of individual tissues in organ growth; R. B. and M. J. B. initiated the project, designed experiments and wrote the paper.

Corresponding authors

Correspondence to Rishikesh Bhalerao or Malcolm J. Bennett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, Supplementary Tables S1, S2, S3 and Supplementary Methods (PDF 4650 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ubeda-Tomás, S., Swarup, R., Coates, J. et al. Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis. Nat Cell Biol 10, 625–628 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing