Arsenic degrades PML or PML–RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway


In acute promyelocytic leukaemia (APL), arsenic trioxide induces degradation of the fusion protein encoded by the PML–RARA oncogene, differentiation of leukaemic cells and produces clinical remissions. SUMOylation of its PML moiety was previously implicated, but the nature of the degradation pathway involved and the role of PML–RARα catabolism in the response to therapy have both remained elusive. Here, we demonstrate that arsenic-induced PML SUMOylation triggers its Lys 48-linked polyubiquitination and proteasome-dependent degradation. When exposed to arsenic, SUMOylated PML recruits RNF4, the human orthologue of the yeast SUMO-dependent E3 ubiquitin-ligase, as well as ubiquitin and proteasomes onto PML nuclear bodies. Arsenic-induced differentiation is impaired in cells transformed by a non-degradable PML–RARα SUMOylation mutant or in APL cells transduced with a dominant-negative RNF4, directly implicating PML–RARα catabolism in the therapeutic response. We thus identify PML as the first protein degraded by SUMO-dependent polyubiquitination. As PML SUMOylation recruits not only RNF4, ubiquitin and proteasomes, but also many SUMOylated proteins onto PML nuclear bodies, these domains could physically integrate the SUMOylation, ubiquitination and degradation pathways.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Arsenic induces SUMOylation, ubiquitination and degradation of PML.
Figure 2: Role of SUMOs and PML SUMOylation sites in arsenic-induced degradation.
Figure 3: RNF4 degrades PML on nuclear bodies.
Figure 4: PML–RARα degradation is required for arsenic-induced differentiation ex vivo.


  1. 1

    Zhu, J., Chen, Z., Lallemand-Breitenbach, V. & de Thé, H. How acute promyelocytic leukaemia revived arsenic. Nature Rev. Cancer 2, 705–713. (2002).

    CAS  Article  Google Scholar 

  2. 2

    Zhu, J. et al. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 94, 3978–3983. (1997).

    CAS  Article  Google Scholar 

  3. 3

    Muller, S., Matunis, M. J. & Dejean, A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 17, 61–70 (1998).

    CAS  Article  Google Scholar 

  4. 4

    Shao, W. et al. Arsenic trioxide as an inducer of apoptosis and loss of PML/RARα protein in acute promyelocytic leukemia cells. J. Natl Cancer Inst. 90, 124–133 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Lallemand-Breitenbach, V. et al. Role of promyelocytic leukemia (PML) SUMOylation in nuclear body formation, 11S proteasome recruitment, and As(2)O(3)-induced PML or PML/retinoic acid receptor α Degradation. J. Exp. Med. 193, 1361–1372. (2001).

    CAS  Article  Google Scholar 

  6. 6

    Chen, G. Q. et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 89, 3345–3353 (1997).

    CAS  PubMed  Google Scholar 

  7. 7

    Davison, K., Mann, K. K., Waxman, S. & Miller, W. H. Jr, JNK activation is a mediator of arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells. Blood 103, 3496–3502 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Miller, W. H., Jr., Schipper, H. M., Lee, J. S., Singer, J. & Waxman, S. Mechanisms of action of arsenic trioxide. Cancer Res. 62, 3893–3903 (2002).

    CAS  PubMed  Google Scholar 

  9. 9

    Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E. & Freemont, P. S. PIC1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13, 971–982 (1996).

    CAS  PubMed  Google Scholar 

  10. 10

    Saitoh, H. & Hinchey, J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252–6258 (2000).

    CAS  Article  Google Scholar 

  11. 11

    Sun, H., Leverson, J. D. & Hunter, T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J. 26, 4102–4112 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Prudden, J. et al. SUMO-targeted ubiquitin ligases in genome stability. EMBO J. 26, 4089–4101 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Uzunova, K. et al. Ubiquitin-dependent proteolytic control of SUMO conjugates. J. Biol. Chem. 282, 34167–34175 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Xie, Y. et al. The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J. Biol. Chem. 282, 34176–34184 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Salomoni, P. & Pandolfi, P. P. The role of PML in tumor suppression. Cell 108, 165–170. (2002).

    CAS  Article  Google Scholar 

  16. 16

    Kamitani, T. et al. Identification of three major sentrinization sites in PML. J. Biol. Chem. 41, 26675–26682 (1998).

    Article  Google Scholar 

  17. 17

    Shen, T. H., Lin, H. K., Scaglioni, P. P., Yung, T. M. & Pandolfi, P. P. The mechanisms of PML-nuclear body formation. Mol. Cell 24, 331–339 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Anton, L. C. et al. Intracellular localization of proteasomal degradation of a viral antigen. J. Cell Biol. 146, 113–124 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Fabunmi, R. P., Wigley, W. C., Thomas, P. J. & DeMartino, G. N. Interferon γ regulates accumulation of the proteasome activator PA28 and immunoproteasomes at nuclear PML bodies. J. Cell Sci. 114, 29–36 (2001).

    CAS  PubMed  Google Scholar 

  20. 20

    Ju, D. & Xie, Y. Identification of the preferential ubiquitination site and ubiquitin-dependent degradation signal of Rpn4. J. Biol. Chem. 281, 10657–10662 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Duprez, E. et al. SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J. Cell Sci. 112, 381–393 (1999).

    CAS  PubMed  Google Scholar 

  22. 22

    Tatham, M. H. et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Hakli, M., Lorick, K. L., Weissman, A. M., Janne, O. A. & Palvimo, J. J. Transcriptional co-regulator SNURF (RNF4) possesses ubiquitin E3 ligase activity. FEBS Lett. 560, 56–62 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P. & Dikic, I. Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281, 16117–16127 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Hakli, M., Karvonen, U., Janne, O. A. & Palvimo, J. J. SUMO-1 promotes association of SNURF (RNF4) with PML nuclear bodies. Exp. Cell Res. 304, 224–233 (2005).

    Article  Google Scholar 

  26. 26

    Zhu, J. et al. A sumoylation site in PML/RAR α is essential for leukemic transformation. Cancer Cell 7, 143–153 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Cheng, J., Kang, X., Zhang, S. & Yeh, E. T. SUMO-specific protease 1 is essential for stabilization of HIF1α during hypoxia. Cell 131, 584–595 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Fu, C. et al. Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3. Oncogene 24, 5401–5413 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Knipscheer, P., van Dijk, W. J., Olsen, J. V., Mann, M. & Sixma, T. K. Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO J. 26, 2797–2807 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Matic, I. et al. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol. Cell Proteomics 7, 132–144 (6 April 2008).

    Google Scholar 

  31. 31

    Tatham, M. H. et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nature Cell Biol. advance online publication doi:10.1038/ncb1716 (2008).

  32. 32

    Lafarga, M. et al. Clastosome: A subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin and protein substrates of proteasome. Mol. Biol. Cell 13, 2771–2782 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Boutell, C., Orr, A. & Everett, R. D. PML residue lysine 160 is required for the degradation of PML induced by herpes simplex virus type 1 regulatory protein ICP0. J. Virol. 77, 8686–8694 (2003).

    Article  Google Scholar 

  34. 34

    Pedrioli, P. G. et al. Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nature Methods 3, 533–539 (2006).

    CAS  Article  Google Scholar 

Download references


This work was supported by Inca, Canceropôle Ile de France, Ligue Nationale Contre le Cancer (LNCC, 863 program (2006 AA02Z150) and the National Natural Science Foundation of China (30525006). B. R. was supported by the Canada Research Chairs Program, Canada Fund for Innovation, Ontario Innovation Trust and the Canadian Institutes for Health Research. M. J. has a PhD scholarship from Region Ile de France. V. L.-B. is an INSERM staff scientist. We warmly thank J. Godet (LNCC) for her continuous support of this project. We thank J. Palvimo for providing an expression vector and antibodies for RNF4. We are most grateful to R. Hay for providing one of the RNF4 siRNAs and discussion of unpublished data. The role of P. G. Pedrioli in designing the SUMmOn program is gratefully acknowledged, as is the critical help of Stéphanie Duffort. Some experiments were initiated in the laboratory of Benjamin G. Neel, supported by R37 CA49152, with the help of Ricky Chan. We thank N. Setterblad and the Service Commun D'imagerie Cellulaire et Moléculaire for their help and J. C. Gluckman and F. Sigaux for reading the manuscript.

Author information



Corresponding author

Correspondence to Hugues de Thé.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5 (PDF 937 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lallemand-Breitenbach, V., Jeanne, M., Benhenda, S. et al. Arsenic degrades PML or PML–RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10, 547–555 (2008).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing