Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A bistable Rb–E2F switch underlies the restriction point

Abstract

The restriction point (R-point) marks the critical event when a mammalian cell commits to proliferation and becomes independent of growth stimulation. It is fundamental for normal differentiation and tissue homeostasis, and seems to be dysregulated in virtually all cancers1,2. Although the R-point has been linked to various activities involved in the regulation of G1–S transition of the mammalian cell cycle2,3,4,5,6, the underlying mechanism remains unclear1,7. Using single-cell measurements, we show here that the Rb–E2F pathway functions as a bistable switch to convert graded serum inputs into all-or-none E2F responses. Once turned ON by sufficient serum stimulation, E2F can memorize and maintain this ON state independently of continuous serum stimulation. We further show that, at critical concentrations and duration of serum stimulation, bistable E2F activation correlates directly with the ability of a cell to traverse the R-point.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified model of the bistable Rb–E2F switch.
Figure 2: Bimodal E2F expression in cultured mammalian cells.
Figure 3: History-dependence of E2F.
Figure 4: Bistable E2F accumulation underlies R-point traverse in response to graded serum-inputs.
Figure 5: Critical timing in activating the bistable Rb–E2F switch underlies R-point traverse.

References

  1. Malumbres, M. & Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nature Rev. Cancer 1, 222–231 (2001).

    Article  CAS  Google Scholar 

  2. Weinberg, R. A. The biology of cancer. (Garland Science, New York, 2007).

    Google Scholar 

  3. Sears, R. C. & Nevins, J. R. Signaling networks that link cell proliferation and cell fate. J. Biol. Chem. 277, 11617–11620 (2002).

    Article  CAS  Google Scholar 

  4. Frolov, M. V. & Dyson, N. J. Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J. Cell Sci. 117, 2173–2181 (2004).

    Article  CAS  Google Scholar 

  5. Attwooll, C., Lazzerini Denchi, E. & Helin, K. The E2F family: specific functions and overlapping interests. EMBO J. 23, 4709–4716 (2004).

    Article  CAS  Google Scholar 

  6. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  Google Scholar 

  7. Zetterberg, A., Larsson, O. & Wiman, K. G. What is the restriction point? Curr. Opin. Cell Biol. 7, 835–842 (1995).

    Article  CAS  Google Scholar 

  8. Pardee, A. B. A restriction point for control of normal animal cell proliferation. Proc. Natl Acad. Sci. USA 71, 1286–1290 (1974).

    Article  CAS  Google Scholar 

  9. Zetterberg, A. & Larsson, O. Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc. Natl Acad. Sci. USA 82, 5365–5369 (1985).

    Article  CAS  Google Scholar 

  10. Xiong, W. & Ferrell, J. E. Jr., A positive-feedback-based bistable 'memory module' that governs a cell fate decision. Nature 426, 460–465 (2003).

    Article  CAS  Google Scholar 

  11. Sha, W. et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc. Natl Acad. Sci. USA 100, 975–980 (2003).

    Article  CAS  Google Scholar 

  12. Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. & Van Oudenaarden, A. Multistability in the lactose utilization network of Escherichia coli. Nature 427, 737–740 (2004).

    Article  CAS  Google Scholar 

  13. Paliwal, S. et al. MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature 446, 46–51 (2007).

    Article  CAS  Google Scholar 

  14. Aguda, B. D. & Tang, Y. The kinetic origins of the restriction point in the mammalian cell cycle. Cell Prolif. 32, 321–335 (1999).

    Article  CAS  Google Scholar 

  15. Novak, B. & Tyson, J. J. A model for restriction point control of the mammalian cell cycle. J. Theoret. Biol. 230, 563–579 (2004).

    Article  CAS  Google Scholar 

  16. Hatzimanikatis, V., Lee, K. H. & Bailey, J. E. A mathematical description of regulation of the G1–S transition of the mammalian cell cycle. Biotech. Bioeng. 65, 631–637 (1999).

    Article  CAS  Google Scholar 

  17. Qu, Z., MacLellan, W. R. & Weiss, J. N. Dynamics of the cell cycle: checkpoints, sizers, and timers. Biophys. J. 85, 3600–3611 (2003).

    Article  CAS  Google Scholar 

  18. Thron, C. D. Bistable biochemical switching and the control of the events of the cell cycle. Oncogene 15, 317–325 (1997).

    Article  CAS  Google Scholar 

  19. Johnson, D. G., Schwarz, J. K., Cress, W. D. & Nevins, J. R. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365, 349–352 (1993).

    Article  CAS  Google Scholar 

  20. Wu, L. et al. The E2F1-3 transcription factors are essential for cellular proliferation. Nature 414, 457–462 (2001).

    Article  CAS  Google Scholar 

  21. Leung, J. Y., Ehmann, G. L., Giangrande, P. H. & Nevis, J. R. A role for Myc in facilitating transcription activation by E2F. Oncogene, advance online publication, doi:10.1038/onc.2008.55 (2008).

  22. Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).

    Article  CAS  Google Scholar 

  23. Ferrell, Jr, J. E. . Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002).

    Article  CAS  Google Scholar 

  24. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  CAS  Google Scholar 

  25. Isaacs, F. J., Hasty, J., Cantor, C. R. & Collins, J. J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl Acad. Sci. USA 100, 7714–7719 (2003).

    Article  CAS  Google Scholar 

  26. Rao, C. V., Wolf, D. M. & Arkin, A. P. Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237 (2002).

    Article  CAS  Google Scholar 

  27. Longo, D. & Hasty, J. Dynamics of single-cell gene expression. Mol. Syst. Biol. 2, 64 (2006).

    Article  Google Scholar 

  28. Bean, J. M., Siggia, E. D. & Cross, F. R. Coherence and timing of cell cycle start examined at single-cell resolution. Mol. Cell 21, 3–14 (2006).

    Article  CAS  Google Scholar 

  29. Matsushime, H., Roussel, M. F., Ashmun, R. A. & Sherr, C. J. Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65, 701–713 (1991).

    Article  CAS  Google Scholar 

  30. Dannenberg, J. H., van Rossum, A., Schuijff, L. & te Riele, H. Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev. 14, 3051–3064 (2000).

    Article  CAS  Google Scholar 

  31. Sage, J. et al. Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev. 14, 3037–3050 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Zhu, L. Kong, R. Rempel, T. Hallstrom, and C. Tan for comments on the manuscript. We also thank Y. Leung, S. Angus, E. Andrechek, Q. Wang, L. Jakoi, K. Culler and H. Zhang for their help. This project was supported by grants from the NIH 5-U24-CA112952-03 (to J.R.N.), NSF BES-0625213 (to L.Y.) and a David and Lucile Packard Fellowship (to L.Y.).

Author information

Authors and Affiliations

Authors

Contributions

G. Y., L. Y. and J. R. N. conceived the project; T. L., L. Y. and G. Y. performed the mathematical modelling; G. Y. performed the experiments. G. Y., L. Y. and J. R. N. analysed the data. S. M. contributed materials and reagents. G. Y., T. L., L. Y. and J. R. N wrote the paper.

Corresponding authors

Correspondence to Joseph R. Nevins or Lingchong You.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6, Supplementary Tables S1, S2, S3 and Supplementary Materials and Methods (PDF 2273 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, G., Lee, T., Mori, S. et al. A bistable Rb–E2F switch underlies the restriction point. Nat Cell Biol 10, 476–482 (2008). https://doi.org/10.1038/ncb1711

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1711

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing