Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tensile forces govern germ-layer organization in zebrafish

Abstract

Understanding the factors that direct tissue organization during development is one of the most fundamental goals in developmental biology. Various hypotheses explain cell sorting and tissue organization on the basis of the adhesive and mechanical properties of the constituent cells1. However, validating these hypotheses has been difficult due to the lack of appropriate tools to measure these parameters. Here we use atomic force microscopy (AFM) to quantify the adhesive and mechanical properties of individual ectoderm, mesoderm and endoderm progenitor cells from gastrulating zebrafish embryos. Combining these data with tissue self-assembly in vitro and the sorting behaviour of progenitors in vivo, we have shown that differential actomyosin-dependent cell-cortex tension, regulated by Nodal/TGFβ-signalling (transforming growth factor β), constitutes a key factor that directs progenitor-cell sorting. These results demonstrate a previously unrecognized role for Nodal-controlled cell-cortex tension in germ-layer organization during gastrulation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Adhesion of germ-layer progenitors measured by single-cell force spectroscopy (SCFS).
Figure 2: Cell-cortex tension of germ-layer progenitors measured by SCFS.
Figure 3: Sorting of germ-layer progenitors in vitro (a) Schematic drawing of an in vitro progenitor cell sorting assay.
Figure 4: Simulations of germ-layer progenitor cell sorting using the Cellular-Potts-Model and germ-layer explant surface analysis.
Figure 5: Sorting of germ-layer progenitor cells in vivo (a) Schematic drawing of an in vivo progenitor cell sorting assay.

References

  1. Tepass, U., Godt, D. & Winklbauer, R. Cell sorting in animal development: Signalling and adhesive mechanisms in the formation of tissue boundaries. Curr. Opin. Genet. Dev. 12, 572–582 (2002).

    CAS  Article  PubMed  Google Scholar 

  2. Montero, J. A. & Heisenberg, C. P. Gastrulation dynamics: Cells move into focus. Trends Cell Biol. 14, 620–627 (2004).

    CAS  Article  PubMed  Google Scholar 

  3. Brodland, G. W. The differential interfacial tension hypothesis (dith): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J. Biomech. Eng. 124, 188–197 (2002).

    Article  PubMed  Google Scholar 

  4. Benoit, M., Gabriel, D., Gerisch, G. & Gaub, H. E. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nature Cell Biol. 2, 313–317 (2000).

    CAS  Article  PubMed  Google Scholar 

  5. Puech, P. H., Poole, K., Knebel, D. & Muller, D. J. A new technical approach to quantify cell-cell adhesion forces by afm. Ultramicroscopy 106, 637–644 (2006).

    CAS  Article  PubMed  Google Scholar 

  6. Zhang, X. et al. Atomic force microscopy measurement of leukocyte-endothelial interaction. Am. J. Physiol. Heart Circ. Physiol. 286, H359–367 (2004).

    CAS  Article  PubMed  Google Scholar 

  7. Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. Nature Rev. Mol. Cell Biol. 6, 622–634 (2005).

    CAS  Article  Google Scholar 

  8. Ulrich, F. et al. Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev. Cell 9, 555–564 (2005).

    CAS  Article  PubMed  Google Scholar 

  9. Montero, J. A. et al. Shield formation at the onset of zebrafish gastrulation. Development 132, 1187–1198 (2005).

    CAS  Article  PubMed  Google Scholar 

  10. Geiger, B. et al. Broad spectrum pan-cadherin antibodies, reactive with the C-terminal 24 amino acid residues of N-cadherin. J. Cell Sci. 97, 607–614. (1990).

    CAS  PubMed  Google Scholar 

  11. Harris, A. K. Is cell sorting caused by differences in the work of intercellular adhesion? A critique of the steinberg hypothesis. J. Theor. Biol. 61, 267–285 (1976).

    CAS  Article  PubMed  Google Scholar 

  12. Dai, J., Ting-Beall, H. P., Hochmuth, R. M., Sheetz, M. P. & Titus, M. A. Myosin I contributes to the generation of resting cortical tension. Biophys. J. 77, 1168–1176 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Evans, E. & Yeung, A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56, 151–160 (1989).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Thoumine, O., Cardoso, O. & Meister, J. J. Changes in the mechanical properties of fibroblasts during spreading: A micromanipulation study. Eur. Biophys. J. 28, 222–234 (1999).

    CAS  Article  PubMed  Google Scholar 

  15. Schier, A. F. Nodal signaling in vertebrate development. Annu. Rev. Cell Dev. Biol. 19, 589–621. (2003).

    CAS  Article  PubMed  Google Scholar 

  16. Gritsman, K. et al. The EGF–CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97, 121–132 (1999).

    CAS  Article  PubMed  Google Scholar 

  17. Schötz, E.-M. et al. Quantitative differences in tissue surface tension influence zebrafish germ layer positioning HFSP J. 2, 42–56 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Davis, G. S., Phillips, H. M. & Steinberg, M. S. Germ-layer surface tensions and “tissue affinities” in Rana pipiens gastrulae: quantitative measurements. Dev. Biol. 192, 630–644 (1997).

    CAS  Article  PubMed  Google Scholar 

  19. Marlow, F., Topczewski, J., Sepich, D. & Solnica-Krezel, L. Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr. Biol. 12, 876–884 (2002).

    CAS  Article  PubMed  Google Scholar 

  20. Maree, A. F. M., Grieneisen, V. A. & Hogeweg, P. The Cellular Potts Model and biophysical properties of cells, tissues and morphogenesis. in Single Cell-Based Models in Biology and Medicine (eds Anderson, A. R. A., Chaplain, M. & Rejniak, K. A.) 107–136 (Birkhäuser Verlag, Basel; 2007).

    Chapter  Google Scholar 

  21. Ouchi, N. B., Glazier, J. A., Rieu, J.-P., Upadhyaya, A. & Sawada, Y. Improving the realism of the cellular potts model in simulations of biological cells. Physica A: Stat. Mech. Applic. 329, 451–458 (2003).

    Article  Google Scholar 

  22. Graner, F. Can surface adhesion drive cell-rearrangement? Part I: Biological cell-sorting. J. Theoret. Biol. 164, 455–476 (1993).

    Article  Google Scholar 

  23. Kafer, J., Hayashi, T., Maree, A. F. M., Carthew, R. W. & Graner, F. Cell adhesion and cortex contractility determine cell patterning in the Drosophila retina. Proc. Natl Acad. Sci. USA 104, 18549–18554 (2007).

    Article  PubMed  Google Scholar 

  24. Shimizu, T. et al. E-cadherin is required for gastrulation cell movements in zebrafish. Mech. Dev. 122, 747–763 (2005).

    CAS  Article  PubMed  Google Scholar 

  25. Warga, R. M. & Kane, D. A. A role for N-cadherin in mesodermal morphogenesis during gastrulation. Dev. Biol. 310, 211–225 (2007).

    CAS  Article  PubMed  Google Scholar 

  26. Steinberg, M. S. Differential adhesion in morphogenesis: A modern view. Curr. Opin. Genet. Dev. 17, 281–286 (2007).

    CAS  Article  PubMed  Google Scholar 

  27. Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev. Mol. Cell Biol. 8, 633–644 (2007).

    CAS  Article  Google Scholar 

  28. Aoki, T. O. et al. Molecular integration of casanova in the nodal signalling pathway controlling endoderm formation. Development 129, 275–286 (2002).

    CAS  PubMed  Google Scholar 

  29. Carmany-Rampey, A. & Schier, A. F. Single-cell internalization during zebrafish gastrulation. Curr. Biol. 11, 1261–1265 (2001).

    CAS  Article  PubMed  Google Scholar 

  30. Dimitriadis, E. K., Horkay, F., Maresca, J., Kachar, B. & Chadwick, R. S. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Rosenbluth, M. J., Lam, W. A. & Fletcher, D. A. Force microscopy of nonadherent cells: A comparison of leukemia cell deformability. Biophys. J. 90, 2994–3003 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Lomakina, E. B., Spillmann, C. M., King, M. R. & Waugh, R. E. Rheological analysis and measurement of neutrophil indentation. Biophys. J. 87, 4246–4258 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Crick, S. L. & Yin, F. C. Assessing micromechanical properties of cells with atomic force microscopy: Importance of the contact point. Biomech. Model. Mechanobiol. 6, 199–210 (2007).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Pierre Bongrand, Wayne Brodland, Jonne Helenius, Mathias Köppen, Andy Oates, Ewa Paluch, Laurel Rohde, Erik Schäffer, Clemens Franz, Sylvia Schneider, Petra Stockinger, Anna Taubenberger, Florian Ulrich and Simon Wilkins for fruitful discussions; Stan Marée for sharing the simulation code for the Cellular-Potts-Model; Lara Carvalho for sharing unpublished results; JPK Instruments for technical support; Jonne Helenius for supporting data analysis procedures and the fifth floor seminar club for vibrant discussions. This work was supported by grants from the Boehringer Ingelheim Fonds to M. K., Deutsch-Französische Hochschule to M. K. and P. H. P. and the Deutsche Forschungsgemeinschaft to C. P. H.

Author information

Authors and Affiliations

Authors

Contributions

M. K. performed and analysed the AFM and biochemical experiments and the hanging drop cell aggregation/sorting experiments; Y. A. performed the molecular biology experiments, embryo injections, cell culture work (sorting and explant analysis), cell transplantations and in situ hybridizations; J. K. performed the simulation experiments and contributed to image analysis; C. P. H., D. M., F. G. and P. H. P. conceived and designed the experiments; M. K., C. P. H., D. M. and P. H. P. prepared the manuscript.

Corresponding authors

Correspondence to D. J. Müller or C.-P. Heisenberg.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5 and Supplementary Table 1 (PDF 910 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krieg, M., Arboleda-Estudillo, Y., Puech, PH. et al. Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol 10, 429–436 (2008). https://doi.org/10.1038/ncb1705

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1705

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing