Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400

Abstract

Germline von Hippel–Lindau tumour suppressor gene (VHL) mutations cause renal cell carcinomas, haemangioblastomas and phaeochromocytomas in humans1. Mutations in VHL also occur in sporadic renal cell carcinomas. The protein encoded by VHL, VHL, is part of the ubiquitin ligase that downregulates the heterodimeric transcription factor Hif under well-oxygenated conditions1. Here we show that acute VHL inactivation causes a senescent-like phenotype in vitro and in vivo. This phenotype was independent of p53 and Hif but dependent on the retinoblastoma protein (Rb) and the SWI2/SNF2 chromatin remodeller p400. Rb activation occurred through a decrease in Skp2 messenger RNA, which resulted in the upregulation of p27 in a Hif-independent fashion. Our results suggest that senescence induced by VHL inactivation is a tumour-suppressive mechanism that must be overcome to develop VHL-associated neoplasias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acute loss of VHL induces a senescence-like phenotype.
Figure 2: Senescence due to VHL loss is independent of Hif.
Figure 3: Senescence due to loss of VHL is dependent on Rb, p27 and Skp2.
Figure 4: Senescence due to VHL inactivation linked to p400 loss.
Figure 5: Senescence due to VHL loss occurs in vivo.

Similar content being viewed by others

References

  1. Kaelin, W. G. Jr. Von Hippel–Lindau disease. Annu. Rev. Pathol. 2, 145–173.

  2. Patil, C. K., Mian, I. S. & Campisi, J. The thorny path linking cellular senescence to organismal aging. Mech. Ageing Dev. 126, 1040–1045 (2005).

    Article  Google Scholar 

  3. Lowe, S. W., Cepero, E. & Evan, G. Intrinsic tumour suppression. Nature 432, 307–315 (2004).

    Article  CAS  Google Scholar 

  4. Di Leonardo, A., Linke, S. P., Clarkin, K. & Wahl, G. M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8, 2540–2551 (1994).

    Article  CAS  Google Scholar 

  5. Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).

    Article  CAS  Google Scholar 

  6. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  7. Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    Article  CAS  Google Scholar 

  8. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  CAS  Google Scholar 

  9. Haase, V. H., Glickman, J. N., Socolovsky, M. & Jaenisch, R. Vascular tumors in livers with targeted inactivation of the von Hippel–Lindau tumor suppressor. Proc. Natl Acad. Sci. USA 98, 1583–1588 (2001).

    Article  CAS  Google Scholar 

  10. DeCaprio, J. A. et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54, 275–283 (1988).

    Article  CAS  Google Scholar 

  11. Hayashi, S. & McMahon, A. P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244, 305–318 (2002).

    Article  CAS  Google Scholar 

  12. Li, L., et al. Hypoxia-inducible factor linked to differential kidney cancer risk seen with type 2A and type 2B VHL mutations. Mol. Cell. Biol. 27, 5381–5392.

    Article  CAS  Google Scholar 

  13. Kondo, K., Kim, W. Y., Lechpammer, M. & Kaelin, W. G. Jr. Inhibition of HIF-2α is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 1, E83 (2003).

    Article  Google Scholar 

  14. Kim, W. Y. et al. Failure to prolyl hydroxylate hypoxia-inducible factor α phenocopies VHL inactivation in vivo. EMBO J. 25, 4650–4662 (2006).

    Article  CAS  Google Scholar 

  15. Sherr, C. J. & DePinho, R. A. Cellular senescence: mitotic clock or culture shock? Cell 102, 407–410.

  16. Bowman, T. et al. Tissue-specific inactivation of p53 tumor suppression in the mouse. Genes Dev. 10, 826–835 (1996).

    Article  CAS  Google Scholar 

  17. King, F. W., Wawrzynow, A., Hohfeld, J. & Zylicz, M. Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53. EMBO J. 20, 6297–6305 (2001).

    Article  CAS  Google Scholar 

  18. Mack, F. A., Patel, J. H., Biju, M. P., Haase, V. H. & Simon, M. C. Decreased growth of Vhl−/− fibrosarcomas is associated with elevated levels of cyclin kinase inhibitors p21 and p27. Mol. Cell. Biol. 25, 4565–4578 (2005).

    Article  CAS  Google Scholar 

  19. Gardner, L. B. et al. Hypoxia inhibits G1/S transition through regulation of p27 expression. J. Biol.Chem. 276, 7919–7926 (2001).

    Article  CAS  Google Scholar 

  20. Goda, N. et al. Hypoxia-inducible factor 1α is essential for cell cycle arrest during hypoxia. Mol. Cell.Biol. 23, 259–269 (2003).

    Article  Google Scholar 

  21. Carmeliet, P. et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485–490 (1998).

    Article  CAS  Google Scholar 

  22. Amati, B. & Vlach, J. Kip1 meets SKP2: new links in cell-cycle control. Nature Cell Biol. 1, E91–E93 (1999).

    Article  CAS  Google Scholar 

  23. Whyte, P. et al. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334, 124–129 (1988).

    Article  CAS  Google Scholar 

  24. Samuelson, A. V. & Lowe, S. W. Selective induction of p53 and chemosensitivity in RB-deficient cells by E1A mutants unable to bind the RB-related proteins. Proc. Natl Acad. Sci. USA 94, 12094–12099 (1997).

    Article  CAS  Google Scholar 

  25. Wang, H. G. et al. Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J. Virol. 67, 476–488 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fuchs, M. et al. The p400 complex is an essential E1A transformation target. Cell 106, 297–307 (2001).

    Article  CAS  Google Scholar 

  27. Samuelson, A. V. et al. p400 is required for E1A to promote apoptosis. J. Biol. Chem. 280, 21915–21923 (2005).

    Article  CAS  Google Scholar 

  28. Chan, H. M., Narita, M., Lowe, S. W. & Livingston, D. M. The p400 E1A-associated protein is a novel component of the p53 → p21 senescence pathway. Genes Dev. 19, 196–201 (2005).

    Article  CAS  Google Scholar 

  29. Welford, S. M. et al. HIF-1α delays premature senescence through the activation of MIF. Genes Dev. 20, 3366–3371 (2006).

    Article  CAS  Google Scholar 

  30. Mandriota, S. J. et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1, 459–468 (2002).

    Article  CAS  Google Scholar 

  31. Walther, M. M., Lubensky, I. A., Venzon, D., Zbar, B. & Linehan, W. M. Prevalence of microscopic lesions in grossly normal renal parenchyma from patients with von Hippel–Lindau disease, sporadic renal cell carcinoma and no renal disease: clinical implications. J. Urol. 154, 2010–2014 (1995).

    Article  CAS  Google Scholar 

  32. Hayashi, S. & McMahon, A. P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244, 305–318 (2002).

    Article  CAS  Google Scholar 

  33. Masutomi, K. et al. Telomerase maintains telomere structure in normal human cells. Cell 114, 241–253 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health, HHMI, Doris Duke Foundation and the Murray Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A. P. Y. and S. Schlisio designed the experiments; A. P. Y., S. Schlisio, Y. A. M., Q. Z., L. L. and C. G. performed the experiments; S. Signoretti analysed the data; A. P. Y. and W. G. K. analysed the data and wrote the paper.

Corresponding author

Correspondence to William G. Kaelin Jr.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5 and S6 (PDF 2345 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, A., Schlisio, S., Minamishima, Y. et al. VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol 10, 361–369 (2008). https://doi.org/10.1038/ncb1699

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1699

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing