Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling

Abstract

ES-cell-based cardiovascular repair requires an in-depth understanding of the molecular mechanisms underlying the differentiation of cardiovascular ES cells. A candidate cardiovascular-fate inducer is the bHLH transcription factor MesP11,2. As one of the earliest markers, it is expressed specifically in almost all cardiovascular precursors and is required for cardiac morphogenesis2,3. Here we show that MesP1 is a key factor sufficient to induce the formation of ectopic heart tissue in vertebrates and increase cardiovasculogenesis by ES cells. Electrophysiological analysis showed all subtypes of cardiac ES-cell differentiation4. MesP1 overexpression and knockdown experiments revealed a prominent function of MesP1 in a gene regulatory cascade, causing Dkk-1-mediated blockade of canonical Wnt-signalling. Independent evidence from ChIP and in vitro DNA-binding studies, expression analysis in wild-type and MesP knockout mice, and reporter assays confirm that Dkk-1 is a direct target of MesP1. Further analysis of the regulatory networks involving MesP1 will be required to preprogramme ES cells towards a cardiovascular fate for cell therapy and cardiovascular tissue engineering. This may also provide a tool to elicit cardiac transdifferentiation in native human adult stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MesP1 overexpression in Xenopus induces ectopic cardiac tissue.
Figure 2: Functionality of the MesP1 overexpression construct in ES cells.
Figure 3: Increased appearance of cardiomyocytes and endothelial cells in MesP1-overexpressing ES cells.
Figure 4: Increased expression of cardiovascular markers in MesP1-overexpressing ES cells.
Figure 5: MesP1 enhances cardiovascular differentiation via Dkk-1 mediated blockage of Wnt-signalling.

Similar content being viewed by others

References

  1. Saga, Y. et al. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126, 3437–3447 (1999).

    CAS  Google Scholar 

  2. Saga, Y., Kitajima, S. & Miyagawa-Tomita, S. MesP1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc. Med. 10, 345–352 (2000).

    Article  CAS  Google Scholar 

  3. Kitajima, S., Miyagawa-Tomita, S., Inoue, T., Kanno, J. & Saga, Y. MesP1-nonexpressing cells contribute to the ventricular cardiac conduction system. Dev. Dyn. 235, 395–402. (2006).

    Article  CAS  Google Scholar 

  4. Maltsev, V. A., Wobus, A. M., Rohwedel, J., Bader, M. & Hescheler, J. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ. Res. 75, 233–244. (1994).

    Article  CAS  Google Scholar 

  5. Nir, S. G., David, R., Zaruba, M., Franz, W. M. & Itskovitz-Eldor, J. Human embryonic stem cells for cardiovascular repair. Cardiovasc. Res. 58, 313–323 (2003).

    Article  CAS  Google Scholar 

  6. David, R., Groebner, M. & Franz, W. M. Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker. Stem Cells 23, 477–482 (2005).

    Article  CAS  Google Scholar 

  7. Saga, Y. et al. MesP1: a novel basic helix-loop-helix protein expressed in the nascent mesodermal cells during mouse gastrulation. Development 122, 2769–2678 (1996).

    CAS  PubMed  Google Scholar 

  8. Satou, Y., Imai, K. S. & Satoh, N. The ascidian MesP gene specifies heart precursor cells. Development. 131, 2533–2541. (2004).

    CAS  Google Scholar 

  9. Davidson, B., Shi, W. & Levine, M. Uncoupling heart cell specification and migration in the simple chordate Ciona intestinalis. Development 132, 4811–4818 (2005).

    Article  CAS  Google Scholar 

  10. Wobus, A. M. et al. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J. Mol. Cell. Cardiol. 29, 1525–1539 (1997).

    Article  CAS  Google Scholar 

  11. Kanno, S. et al. Nitric oxide facilitates cardiomyogenesis in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 101, 12277–12281 (2004).

    Article  CAS  Google Scholar 

  12. Schroeder, T. et al. Recombination signal sequence-binding protein Jκ alters mesodermal cell fate decisions by suppressing cardiomyogenesis. Proc. Natl Acad. Sci. USA 100, 4018–4023 (2003).

    Article  CAS  Google Scholar 

  13. Tillet, E. et al. N-cadherin deficiency impairs pericyte recruitment, and not endothelial differentiation or sprouting, in embryonic stem cell-derived angiogenesis. Exp. Cell Res. 310, 392–400 (2005).

    Article  CAS  Google Scholar 

  14. Kinder, S. J. et al. The organizer of the mouse gastrula is composed of a dynamic population of progenitor cells for the axial mesoderm. Development 128, 3623–3634 (2001).

    CAS  PubMed  Google Scholar 

  15. Weinmann, A. S. & Farnham, P. J. Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 26, 37–47 (2002).

    Article  CAS  Google Scholar 

  16. Izumi, N., Era, T., Akimaru, H., Yasunaga, M. & Nishikawa, S. Dissecting the molecular hierarchy for mesendoderm differentiation through a combination of embryonic stem cell culture and RNA interference. Stem Cells 25, 1664–1674 (2007).

    Article  CAS  Google Scholar 

  17. Sakurai, H. et al. In vitro modeling of paraxial and lateral mesoderm differentiation reveals early reversibility. Stem Cells 24, 575–586 (2006).

    Article  CAS  Google Scholar 

  18. Liu, Y. et al. Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells. Proc. Natl Acad. Sci. US. 104, 3859–3864 (2007).

    Article  CAS  Google Scholar 

  19. Kitajima, S., Takagi, A., Inoue, T. & Saga, Y. MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 127, 3215–3226 (2000).

    CAS  PubMed  Google Scholar 

  20. Foley, A. C. & Mercola, M. Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev. 19, 387–396 (2005).

    Article  CAS  Google Scholar 

  21. Klaus, A., Saga, Y., Taketo, M. M., Tzahor, E. & Birchmeier, W. Distinct roles of Wnt/β-catenin and Bmp signalling during early cardiogenesis. Proc. Natl Acad. Sci. USA 104, 18531–18536 (2007).

    Article  CAS  Google Scholar 

  22. Schneider, V. A. & Mercola, M. Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev. 15, 304–315 (2001).

    Article  CAS  Google Scholar 

  23. Eisenberg, L. M. & Eisenberg, C. A. Wnt signal transduction and the formation of the myocardium. Dev. Biol. 293, 305–315 (2006).

    Article  CAS  Google Scholar 

  24. Jaspard, B., Couffinhal, T., Dufourcq, P., Moreau, C. & Duplaa, C. Expression pattern of mouse sFRP-1 and mWnt-8 gene during heart morphogenesis. Mech. Dev. 90, 263–267 (2000).

    Article  CAS  Google Scholar 

  25. Reiter, J. F. et al. Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev. 13, 2983–2995 (1999).

    Article  CAS  Google Scholar 

  26. David, R., Joos, T. O. & Dreyer, C. Anteroposterior patterning and organogenesis of Xenopus laevis require a correct dose of germ cell nuclear factor (xGCNF). Mech. Dev. 79, 137–152. (1998).

    Article  CAS  Google Scholar 

  27. Weintraub, H. et al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251, 761–766 (1991).

    Article  CAS  Google Scholar 

  28. Muller, M. et al. Selection of ventricular-like cardiomyocytes from ES cells in vitro. Faseb J. 14, 2540–2548 (2000).

    Article  CAS  Google Scholar 

  29. Stieber, J. et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc. Natl Acad. Sci. USA 100, 15235–15240 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful for expert technical assistance from Christiane Gross who is funded by the Deutsche Forschungsgemeinschaft (DFG; FR 705/11-3) and the Fritz-Bender-Stiftung. We are also very grateful to Frank Ebel (Max-von-Pettenkofer-Institut, Munich) for helping with the laser scanning microscopy experiments. R.D. is funded exclusively by the DFG (FR 705/11-3). C.B. and F.S. is funded by the FöFoLe program of the LMU Munich. H.L. is supported by an Emmy-Noether Fellowship of the DFG. Additional funding was granted by the Helmut Legalotz-Stiftung for FACS and consumables. We thank Christof Niehrs for the mouse Dkk-1 in situ probe and Yumiko Saga for providing us with the MesP1/2 dK.O. embryos.

Author information

Authors and Affiliations

Authors

Contributions

R. D. designed the experiments together with W.-M. F. and performed promoter studies; J. M.-H. perfromed the electron mcroscoy analyses; R. R., R. D. and E. M. performed the Xenopus experiments; R. D. and C. B. performed the molecular cloning and ES cell experiments, and RT-PCR; C. B., F. S. and S. B. performed the FACS and immunostaining; J. S. performed the electrophysiological studies; H. L., M. V. and S. K. performed the wild-type and knockout in situ hybridization studies.

Corresponding authors

Correspondence to R. David or W.-M. Franz.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5, S6, Movie legends, Supplementary table S1 and Methods (PDF 1596 kb)

Supplementary Information

Supplementary Movie 1 (WMV 478 kb)

Supplementary Information

Supplementary Movie 2 (WMV 207 kb)

Supplementary Information

Supplementary Movie 3 (WMV 263 kb)

Supplementary Information

Supplementary Movie 4 (WMV 378 kb)

Supplementary Information

Supplementary Movie 5 (MPG 5081 kb)

Supplementary Information

Supplementary Movie 6 (MPG 4761 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, R., Brenner, C., Stieber, J. et al. MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat Cell Biol 10, 338–345 (2008). https://doi.org/10.1038/ncb1696

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1696

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing