Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wingless secretion promotes and requires retromer-dependent cycling of Wntless

Abstract

Wnt ligands are lipid-modified, secreted glycoproteins that control multiple steps during embryogenesis and adult-tissue homeostasis. Little is known about the mechanisms underlying Wnt secretion. Recently, Wntless (Wls/Evi/Srt) was identified as a conserved multi-pass transmembrane protein whose function seems to be dedicated to promoting the release of Wnts1,2,3. Here, we describe Wls accumulation in the Golgi apparatus of Wnt/Wingless (Wg)-producing cells in Drosophila, and show that this localization is essential for Wg secretion. Moreover, Wls localization and levels critically depend on retromer, a conserved protein complex that mediates endosome-to-Golgi protein trafficking in yeast4. In the absence of the retromer components Dvps35 or Dvps26, but in presence of Wg, Wls is degraded and Wg secretion impaired. Our results indicate that Wg, clathrin-mediated endocytosis and retromer sustain a Wls traffic loop from the Golgi to the plasma membrane and back to the Golgi, thereby enabling Wls to direct Wnt secretion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The presence of Drosophila Wnt proteins alters Wls levels.
Figure 2: Endogenous Wls accumulates in the Golgi in Wg-producing cells.
Figure 3: Reduction of retromer function inhibits Wg secretion.
Figure 4: Reduction of retromer function results in a loss of Wls in Wg-producing cells.
Figure 5: Wls is localized at the cell membrane and rescues loss-of-retromer function.

Similar content being viewed by others

References

  1. Banziger, C. et al. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125, 509–522 (2006).

    Article  CAS  Google Scholar 

  2. Bartscherer, K., Pelte, N., Ingelfinger, D. & Boutros, M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125, 523–533 (2006).

    Article  CAS  Google Scholar 

  3. Goodman, R. M. et al. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development 133, 4901–4911 (2006).

    Article  CAS  Google Scholar 

  4. Seaman, M. N. Recycle your receptors with retromer. Trends Cell Biol. 15, 68–75 (2005).

    Article  CAS  Google Scholar 

  5. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell. Dev. Biol. 20, 781–810 (2004).

    Article  CAS  Google Scholar 

  6. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  Google Scholar 

  7. Hausmann, G., Banziger, C. & Basler, K. Helping Wingless take flight: how WNT proteins are secreted. Nature Rev. Mol. Cell Biol. 8, 331–336 (2007).

    Article  CAS  Google Scholar 

  8. Coudreuse, D. & Korswagen, H. C. The making of Wnt: new insights into Wnt maturation, sorting and secretion. Development 134, 3–12 (2007).

    Article  CAS  Google Scholar 

  9. Takada, R. et al. Mono-unsaturated fatty acid modification of Wnt protein: Its role in Wnt secretion. Dev. Cell 11, 791–801 (2006).

    Article  CAS  Google Scholar 

  10. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  Google Scholar 

  11. Tanaka, K., Kitagawa, Y. & Kadowaki, T. Drosophila segment polarity gene product porcupine stimulates the posttranslational N-glycosylation of wingless in the endoplasmic reticulum. J. Biol. Chem. 277, 12816–12823 (2002).

    Article  CAS  Google Scholar 

  12. McCartney, B. M. et al. Testing hypotheses for the functions of APC family proteins using null and truncation alleles in Drosophila. Development 133, 2407–2418 (2006).

    Article  CAS  Google Scholar 

  13. Nolo, R., Abbott, L. A. & Bellen, H. J. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102, 349–362 (2000).

    Article  CAS  Google Scholar 

  14. Kramps, T. et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin–TCF complex. Cell 109, 47–60 (2002).

    Article  CAS  Google Scholar 

  15. Theisen, H. et al. dishevelled is required during wingless signaling to establish both cell polarity and cell identity. Development 120, 347–360 (1994).

    CAS  PubMed  Google Scholar 

  16. Llimargas, M. & Lawrence, P. A. Seven Wnt homologues in Drosophila: a case study of the developing tracheae. Proc. Natl Acad. Sci. USA 98, 14487–14492 (2001).

    Article  CAS  Google Scholar 

  17. Cohen, E. D. et al. DWnt4 regulates cell movement and focal adhesion kinase during Drosophila ovarian morphogenesis. Dev. Cell 2, 437–448 (2002).

    Article  CAS  Google Scholar 

  18. Yoshikawa, S., McKinnon, R. D., Kokel, M. & Thomas, J. B. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 422, 583–588 (2003).

    Article  CAS  Google Scholar 

  19. Stanley, H., Botas, J. & Malhotra, V. The mechanism of Golgi segregation during mitosis is cell type-specific. Proc. Natl Acad. Sci. USA 94, 14467–14470 (1997).

    Article  CAS  Google Scholar 

  20. Cole, N. B. et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273, 797–801 (1996).

    Article  CAS  Google Scholar 

  21. Miaczynska, M. & Zerial, M. Mosaic organization of the endocytic pathway. Exp. Cell Res. 272, 8–14 (2002).

    Article  CAS  Google Scholar 

  22. Snapp, E. L., Iida, T., Frescas, D., Lippincott-Schwartz, J. & Lilly, M. A. The fusome mediates intercellular endoplasmic reticulum connectivity in Drosophila ovarian cysts. Mol. Biol. Cell 15, 4512–4521 (2004).

    Article  CAS  Google Scholar 

  23. Coudreuse, D. Y., Roel, G., Betist, M. C., Destree, O. & Korswagen, H. C. Wnt gradient formation requires retromer function in Wnt-producing cells. Science 312, 921–924 (2006).

    Article  CAS  Google Scholar 

  24. Prasad, B. C. & Clark, S. G. Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development 133, 1757–1766 (2006).

    Article  CAS  Google Scholar 

  25. Seaman, M. N., McCaffery, J. M. & Emr, S. D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681 (1998).

    Article  CAS  Google Scholar 

  26. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    Article  CAS  Google Scholar 

  27. McMahon, A. P., Ingham, P. W. & Tabin, C. J. Developmental roles and clinical significance of hedgehog signaling. Curr. Top. Dev. Biol. 53, 1–114 (2003).

    Article  CAS  Google Scholar 

  28. Entchev, E. V., Schwabedissen, A. & Gonzalez-Gaitan, M. Gradient formation of the TGFβ homolog Dpp. Cell 103, 981–991 (2000).

    Article  CAS  Google Scholar 

  29. Teleman, A. A. & Cohen, S. M. Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103, 971–980 (2000).

    Article  CAS  Google Scholar 

  30. Robinson, M. S. Adaptable adaptors for coated vesicles. Trends Cell Biol. 14, 167–174 (2004).

    Article  CAS  Google Scholar 

  31. Nakatsu, F. & Ohno, H. Adaptor protein complexes as the key regulators of protein sorting in the post-Golgi network. Cell Struct. Funct. 28, 419–429 (2003).

    Article  CAS  Google Scholar 

  32. Marois, E., Mahmoud, A. & Eaton, S. The endocytic pathway and formation of the Wingless morphogen gradient. Development 133, 307–317 (2006).

    Article  CAS  Google Scholar 

  33. Worby, C. A., Simonson-Leff, N. & Dixon, J. E. RNA interference of gene expression (RNAi) in cultured Drosophila cells. Sci. STKE 95, PL1 (2001).

    Google Scholar 

  34. Baker, N. E. Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos. EMBO J. 6, 1765–1773 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank: S. Eaton, M. A. Lilly, G. Morata and G. Struhl for providing fly stocks and antibodies; B. Dickson and the VDRC team for providing RNAi lines; R. Korswagen for sharing unpublished observations; V. Katanaev and S. Luschnig for critical reading of the manuscript; and members of our lab for discussions. This work was supported by the Swiss National Science Foundation and the Kanton of Zürich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Basler.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, s3, S4 and S5, Supplementary Note and Supplementary Methods (PDF 1452 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Port, F., Kuster, M., Herr, P. et al. Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat Cell Biol 10, 178–185 (2008). https://doi.org/10.1038/ncb1687

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1687

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing