Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE

An Erratum to this article was published on 01 March 2008

Abstract

In three-dimensional matrices cancer cells move with a rounded, amoeboid morphology that is controlled by ROCK-dependent contraction of acto-myosin. In this study, we show that PDK1 is required for phosphorylation of myosin light chain and cell motility, both on deformable gels and in vivo. Depletion of PDK1 alters the localization of ROCK1 and reduces its ability to drive cortical acto-myosin contraction. This form of ROCK1 regulation does not require PDK1 kinase activity, but instead involves direct binding of PDK1 to ROCK1 at the plasma membrane; PDK1 competes directly with RhoE for binding to ROCK1. In the absence of PDK1, negative regulation by RhoE predominates, causing reduced acto-myosin contractility and motility. This work uncovers a novel non-catalytic role for PDK1 in regulating cortical acto-myosin and cell motility.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Knockdown of PDK1 disrupts rounded cell morphology and reduces cell motility.
Figure 2: PDK1 is required for cell motility in vivo.
Figure 3: Knockdown of PDK1 disrupts MLC phosphorylation and organization.
Figure 4: PDK1 is required for ROCK1 localization and function.
Figure 5: PDK1 does not regulate kinase activity of ROCK1.
Figure 6: ROCK1 associates with RhoE when PDK1 is absent and results in reduced cell motility and blebbing.

Similar content being viewed by others

References

  1. Even-Ram, S. & Yamada, K. M. Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17, 524–532 (2005).

    Article  CAS  Google Scholar 

  2. Dumstrei, K., Mennecke, R. & Raz, E. Signaling pathways controlling primordial germ cell migration in zebrafish. J. Cell Sci. 117, 4787–4795 (2004).

    Article  CAS  Google Scholar 

  3. Charras, G. T., Hu, C. K., Coughlin, M. & Mitchison, T. J. Reassembly of contractile actin cortex in cell blebs. J. Cell Biol. 175, 477–490 (2006).

    Article  CAS  Google Scholar 

  4. Blaser, H. et al. Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev. Cell 11, 613–627 (2006).

    Article  CAS  Google Scholar 

  5. Langridge, P. D. & Kay, R. R. Blebbing of Dictyostelium cells in response to chemoattractant. Exp. Cell Res. 312, 2009–2017 (2006).

    Article  CAS  Google Scholar 

  6. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Rev. Cancer 3, 362–374 (2003).

    Article  CAS  Google Scholar 

  7. Sahai, E. & Marshall, C. J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biol. 5, 711–719 (2003).

    Article  CAS  Google Scholar 

  8. Hooper, S., Marshall, J. F. & Sahai, E. Tumor cell migration in three dimensions. Methods Enzymol. 406, 625–643 (2006).

    Article  CAS  Google Scholar 

  9. Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–248 (1996).

    Article  CAS  Google Scholar 

  10. Riento, K. & Ridley, A. J. Rocks: multifunctional kinases in cell behaviour. Nature Rev. Mol. Cell Biol. 4, 446–456 (2003).

    Article  CAS  Google Scholar 

  11. Friedl, P. & Wolf, K. Proteolytic and non-proteolytic migration of tumour cells and leucocytes. Biochem. Soc. Symp. 70, 277–285 (2003).

    Article  CAS  Google Scholar 

  12. Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S. & Sahai, E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr. Biol. 16, 1515–1523 (2006).

    Article  CAS  Google Scholar 

  13. Hansen, S. H. et al. Induced expression of Rnd3 is associated with transformation of polarized epithelial cells by the Raf-MEK-extracellular signal-regulated kinase pathway. Mol. Cell. Biol. 20, 9364–9375 (2000).

    Article  CAS  Google Scholar 

  14. Nobes, C. D. et al. A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J. Cell Biol. 141, 187–197 (1998).

    Article  CAS  Google Scholar 

  15. Riento, K. et al. RhoE function is regulated by ROCK I-mediated phosphorylation. EMBO J. 24, 1170–1180 (2005).

    Article  CAS  Google Scholar 

  16. Riento, K., Guasch, R. M., Garg, R., Jin, B. & Ridley, A. J. RhoE binds to ROCK I and inhibits downstream signaling. Mol. Cell. Biol. 23, 4219–4229 (2003).

    Article  CAS  Google Scholar 

  17. Mora, A., Komander, D. van Aalten, D.M. & Alessi, D.R. PDK1, the master regulator of AGC kinase signal transduction. Semin. Cell Dev. Biol. 15, 161–170 (2004).

    Article  CAS  Google Scholar 

  18. Saunders, R. M. et al. Role of vinculin in regulating focal adhesion turnover. Eur. J. Cell Biol. 85, 487–500 (2006).

    Article  CAS  Google Scholar 

  19. Nayal, A. et al. Paxillin phosphorylation at Ser273 localizes a GIT1–PIX–PAK complex and regulates adhesion and protrusion dynamics. J. Cell Biol. 173, 587–589 (2006).

    Article  CAS  Google Scholar 

  20. Kanzaki, M. et al. Small GTP-binding protein TC10 differentially regulates two distinct populations of filamentous actin in 3T3L1 adipocytes. Mol. Biol. Cell 13, 2334–2346 (2002).

    Article  CAS  Google Scholar 

  21. Hu, K., Ji, L., Applegate, K. T., Danuser, G. & Waterman-Storer, C. M. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007).

    Article  CAS  Google Scholar 

  22. Tao, W., Pennica, D., Xu, L., Kalejta, R. F. & Levine, A. J. Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev. 15, 1796–1807 (2001).

    Article  CAS  Google Scholar 

  23. Abe, T., Kato, M., Miki, H., Takenawa, T. & Endo, T. Small GTPase Tc10 and its homologue RhoT induce N-WASP-mediated long process formation and neurite outgrowth. J. Cell Sci. 116, 155–168 (2003).

    Article  CAS  Google Scholar 

  24. Kitzing, T. M. et al. Positive feedback between Dia1, LARG, and RhoA regulates cell morphology and invasion. Genes Dev. 21, 1478–1483 (2007).

    Article  CAS  Google Scholar 

  25. Sahai, E. Illuminating the metastatic process. Nature Rev. Cancer 7, 737–749 (2007).

    Article  CAS  Google Scholar 

  26. Kirk, R. I., Sanderson, M. R. & Lerea, K. M. Threonine phosphorylation of the β3 integrin cytoplasmic tail, at a site recognized by PDK1 and Akt/PKB in vitro, regulates Shc binding. J. Biol. Chem. 275, 30901–30906 (2000).

    Article  CAS  Google Scholar 

  27. Wilkinson, S., Paterson, H. F. & Marshall, C. J. Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nature Cell Biol. 7, 255–261 (2005).

    Article  CAS  Google Scholar 

  28. Yoneda, A., Multhaupt, H. A. & Couchman, J. R. The Rho kinases I and II regulate different aspects of myosin II activity. J. Cell Biol. 170, 443–453 (2005).

    Article  CAS  Google Scholar 

  29. Croft, D. R. et al. Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Res. 64, 8994–9001 (2004).

    Article  CAS  Google Scholar 

  30. Miyazaki, K., Komatsu, S. & Ikebe, M. Dynamics of RhoA and ROKα translocation in single living cells. Cell Biochem. Biophys. 45, 243–254 (2006).

    Article  CAS  Google Scholar 

  31. Leung, T., Chen, X. Q., Manser, E. & Lim, L. The p160 RhoA-binding kinase ROKα is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell. Biol. 16, 5313–5327 (1996).

    Article  CAS  Google Scholar 

  32. Lim, M. A. et al. Roles of PDK-1 and PKN in regulating cell migration and cortical actin formation of PTEN-knockout cells. Oncogene 23, 9348–9358 (2004).

    Article  CAS  Google Scholar 

  33. Primo, L. et al. Essential role of PDK1 in regulating endothelial cell migration. J. Cell Biol. 176, 1035–1047 (2007).

    Article  CAS  Google Scholar 

  34. Xie, Z. et al. 3-phosphoinositide-dependent protein kinase-1 (PDK1) promotes invasion and activation of matrix metalloproteinases. BMC Cancer 6, 77 (2006).

    Article  Google Scholar 

  35. Weber, D. S. et al. Phosphoinositide-dependent kinase 1 and p21-activated protein kinase mediate reactive oxygen species-dependent regulation of platelet-derived growth factor-induced smooth muscle cell migration. Circ. Res. 94, 1219–1226 (2004).

    Article  CAS  Google Scholar 

  36. Clark, E. A., Golub, T. R., Lander, E. S. & Hynes, R. O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000).

    Article  CAS  Google Scholar 

  37. Fritz, G., Brachetti, C., Bahlmann, F., Schmidt, M. & Kaina, B. Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br. J. Cancer 87, 635–644 (2002).

    Article  CAS  Google Scholar 

  38. Itoh, K. et al. An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nature Med. 5, 221–225 (1999).

    Article  CAS  Google Scholar 

  39. Sahai, E. & Marshall, C. J. RHO-GTPases and cancer. Nature Rev. Cancer 2, 133–142 (2002).

    Article  Google Scholar 

  40. Wang, W. et al. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res. 64, 8585–8594 (2004).

    Article  CAS  Google Scholar 

  41. Matsui, T. et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 15, 2208–2216 (1996).

    Article  CAS  Google Scholar 

  42. Ishizaki, T. et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 15, 1885–1893 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Chris Marshall, Michael Way and lab members for their comments, members of the Biological Resources and Light Microscopy units for technical assistance and Cancer Research UK for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Sahai.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, s3, S4, S5, S6, S7 and S8 and Supplementary Material (PDF 966 kb)

Supplementary Information

Supplementary Movie 1 (AVI 4240 kb)

Supplementary Information

Supplementary Movie 2 (AVI 9503 kb)

Supplementary Information

Supplementary Movie 3 (AVI 674 kb)

Supplementary Information

Supplementary Movie 4 (AVI 508 kb)

Supplementary Information

Supplementary Movie 5 (AVI 6824 kb)

Supplementary Information

Supplementary Movie 6 (AVI 5587 kb)

Supplementary Information

Supplementary Movie 7 (AVI 1053 kb)

Supplementary Information

Supplementary Movie 8 (AVI 585 kb)

Supplementary Information

Supplementary Movie 9 (AVI 2771 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinner, S., Sahai, E. PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nat Cell Biol 10, 127–137 (2008). https://doi.org/10.1038/ncb1675

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1675

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing