Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disruption of KIF17–Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin–cargo release

Abstract

Establishment and maintenance of cell structures and functions are highly dependent on the efficient regulation of intracellular transport in which proteins of the kinesin superfamily (KIFs) are very important. In this regard, how KIFs regulate the release of their cargo is a critical process that remains to be elucidated. To address this specific question, we have investigated the mechanism behind the regulation of the KIF17–Mint1 interaction. Here we report that the tail region of the molecular motor KIF17 is regulated by phosphorylation. Using direct visualization of protein–protein interaction by FRET and various in vitro and in vivo approaches we have demonstrated that CaMKII-dependent phosphorylation of KIF17 on Ser 1029 disrupts the KIF17–Mint1 association and results in the release of the transported cargo from its microtubule-based transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding domains on KIF17 tail region and interaction with Mint1.
Figure 2: Disruption of KIF17–Mint1 interaction by CaMKII-dependent phosphorylation and FRET analysis of KIF17-Mint1 interaction using KIF17 phosphorylated peptides.
Figure 3: CaMKII interacts with KIF17.
Figure 4: Interaction and distribution of KIF17 and CaMKII in vivo.
Figure 5: CaMKII phosphorylates KIF17 on Ser 1029.
Figure 6: Phosphorylation of KIF17 by CaMKII in vivo and KIF17–Mint1 interaction.
Figure 7: FRET analysis of KIF17–Mint1 interaction using KIF17 mutated peptides.
Figure 8: Illustration of KIF17 unloading mechanism.

Similar content being viewed by others

References

  1. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Hirokawa, N. & Takemura, R. Molecular motors and mechanisms of directional transport in neurons. Nature Rev. Neurosci. 6, 201–214 (2005).

    Article  CAS  Google Scholar 

  4. Setou, M., Nakagawa, T., Seog, D. H. & Hirokawa, N. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796–1802 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Nakagawa, T. et al. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103, 537–540 (2000).

    Article  Google Scholar 

  6. Verhey, K. J. et al. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959–970 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Setou, M. et al. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83–87 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Nakata, T. & Hirokawa, N. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol. 162, 1045–1055 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sampo, B., Kaech, S., Kunz, S. & Banker, G. Two distinct mechanisms target membrane proteins to the axonal surface. Neuron 37, 611–624 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Kikkawa, M. et al. Switch-based mechanism of kinesin motors. Nature 411, 439–445 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Okada, Y., Higuchi, H. & Hirokawa, N. Processivity of the single-headed kinesin KIF1A through biased binding to tubulin. Nature 424, 574–577 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Kamal, A. & Goldstein, L. S. B. Principles of cargo attachment to cytoplasmic motor proteins. Curr. Opin. Cell Biol. 14, 63–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Karcher, R. L. et al. Cell cycle regulation of myosin-V by calcium/calmodulin-dependent protein kinase II. Science 293, 1317–1320 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Allan, V. I. & Vale, R. D. Cell cycle control of microtubule-based membrane transport and tubule formation in vitro. J. Cell Biol. 113, 347–359 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Sato-Yoshitake, R., Yorifuji, H., Inagaki, M. & Hirokawa, N. The phosphorylation of kinesin regulates its binding to synaptic vesicles. J. Biol. Chem. 267, 23930–23936 (1992).

    CAS  PubMed  Google Scholar 

  16. Tsai, M., Morfini, G., Szebenyi, G. & Brady, S. T. Release of kinesin from vesicles by hsc70 and regulation of fast axonal transport. Mol. Biol. Cell 11, 2161–2173 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stagi, M., Gorlovoy, P., Larionov, S., Takahashi, K. & Neumann, H. Unloading kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-terminal kinase pathway. FASEB J. 14, 2573–2575 (2006).

    Article  Google Scholar 

  18. Miki, H., Okada, Y. & Hirokawa, N. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol. 15, 467–476 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Guillaud, L., Setou, M. & Hirokawa, N. KIF17 dynamics and regulation of NR2B trafficking in hippocampal neurons. J. Neurosci. 23, 131–140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wong, R. W., Setou, M., Teng, J., Takei, Y. & Hirokawa, N. Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice. Proc. Natl Acad. Sci. USA 99, 14500–14505 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hollenbeck, P. J. Phosphorylation of neuronal kinesin heavy and light chains in vivo. J. Neurochem. 60, 2265–2275 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Morfini, G., Szebenyi, G., Elluru, R., Ratner, N. & Brady, S. T. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 21, 281–293 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kennelly, P. J. & Krebs, E. G. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J. Biol. Chem. 266, 15555–15558 (1991).

    CAS  PubMed  Google Scholar 

  24. Sparks, A. B., Rider, J. E. & Kay, B. K. Mapping the specificity of SH3 domains with phage-displayed random-peptide libraries. Methods Mol. Biol. 84, 87–103 (1998).

    CAS  PubMed  Google Scholar 

  25. Anderson, J. M. Cell signalling: MAGUK magic. Curr. Biol. 6, 382–384 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Shen, K. & Meyer, T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284, 162–166 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Long, J. F. et al. Autoinhibition of X11/Mint scaffold proteins revealed by the closed conformation of the PDZ tandem. Nature Struct. Mol. Biol. 12, 722–728 (2005).

    Article  CAS  Google Scholar 

  28. Costa, M. C. R., Mani, F., Santoro, W. Jr, Espreafico, E. M. & Larson, R. E. Brain myosin-V, a calmodulin-carrying myosin, binds to calmodulin-dependent protein kinase II and activates its kinase activity. J. Biol. Chem. 274, 15811–15819 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Rev. Neurosci. 3, 175–190 (2002).

    Article  CAS  Google Scholar 

  30. Washbourne, P., Liu, X. B., Jones, E. G. & McAllister, A. K. Cycling of NMDA receptors during trafficking in neurons before synapse formation. J. Neurosci. 90, 3950–3957 (2004).

    Google Scholar 

  31. Groc, L. Choquet D. AMPA and NMDA glutamate receptor trafficking: multiple roads for reaching and leaving the synapse. Cell Tissue Res. 326, 423–438 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Lau, C. G. & Zukin, R. S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nature Rev. Neurosci. 8, 413–426 (2007).

    Article  CAS  Google Scholar 

  33. Mok, H. et al. Association of the kinesin superfamily motor protein KIF1B(with postsynaptic density-95 (PSD-95), synapse-associated protein-97, and synaptic scaffolding molecule PSD-95/Discs Large/Zona Occludens-1 proteins. J. Neurosci. 22, 5253–5258 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, P., Gu, Z., Liu, W. & Yan, Z. Glycogen synthase kinase 3 regulates N-methyl-D-aspartate receptor channel trafficking and function in cortical neurons. Mol. Pharmacol. 72, 40–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Forster, T. Intermolecular energy migration and fluorescence. Ann. Phys. (Leipzig) 2, 55–75 (1948).

    Article  CAS  Google Scholar 

  36. Miyawaki, A. & Tsien, R. Y. Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol. 327, 472–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Spiegel, R. M. et al. Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein. Sci. STKE 38, l1 (2000).

    Google Scholar 

  38. Frank, R. & Overwin, H. SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. Meth. Mol. Biol. 66, 149–169 (1996).

    CAS  Google Scholar 

  39. Boyle, W. J., Van der, Geer, P. & Hunter, T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 201, 110–149 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Meyer (Stanford University, CA) for the GFP–CaMKII constructs, Y. Okada (Hirokawa Laboratory) for helpful discussions and S. Hiromi (Hirokawa Laboratory) for the hippocampal neuron preparations. This work was supported by a grant-in-aid for specially-promoted research from the Japanese Ministry of Education, Culture, Sports, Science and Technology to N.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobutaka Hirokawa.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillaud, L., Wong, R. & Hirokawa, N. Disruption of KIF17–Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin–cargo release. Nat Cell Biol 10, 19–29 (2008). https://doi.org/10.1038/ncb1665

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1665

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing