Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid activation of ATM on DNA flanking double-strand breaks

Abstract

The tumour-suppressor gene ATM, mutations in which cause the human genetic disease ataxia telangiectasia (A-T), encodes a key protein kinase that controls the cellular response to DNA double-strand breaks (DSBs)1,2. DNA DSBs caused by ionizing radiation or chemicals result in rapid ATM autophosphorylation, leading to checkpoint activation and phosphorylation of substrates that regulate cell-cycle progression, DNA repair, transcription and cell death3. However, the precise mechanism by which damaged DNA induces ATM and checkpoint activation remains unclear. Here, we demonstrate that linear DNA fragments added to Xenopus egg extracts mimic DSBs in genomic DNA and provide a platform for ATM autophosphorylation and activation. ATM autophosphorylation and phosphorylation of its substrate NBS1 are dependent on DNA fragment length and the concentration of DNA ends. The minimal DNA length required for efficient ATM autophosphorylation is 200 base pairs, with cooperative autophosphorylation induced by DNA fragments of at least 400 base pairs. Importantly, full ATM activation requires it to bind to DNA regions flanking DSB ends. These findings reveal a direct role for DNA flanking DSB ends in ATM activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATM autophosphorylation and phosphorylation of NBS1 depend on the concentration of DSB ends and the length of flanking DNA.
Figure 2: ATM activation is associated with DNA fragments, but does not require the exposure of the ends of both strands.
Figure 3: ATM binds both to DNA ends and to flanking DNA regions.
Figure 4: ATM binding to internal DNA regions flanking DSBs is required for its efficient autophosphorylation and activation.

Similar content being viewed by others

References

  1. Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001).

    Article  CAS  Google Scholar 

  2. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer 3, 155–168 (2003).

    Article  CAS  Google Scholar 

  3. Bakkenist, C. J. & Kastan, M. B. Initiating cellular stress responses. Cell 118, 9–17 (2004).

    Article  CAS  Google Scholar 

  4. Costanzo, V., Robertson, K. & Gautier, J. Xenopus cell-free extracts to study the DNA damage response. Methods Mol. Biol. 280, 213–227 (2004).

    CAS  PubMed  Google Scholar 

  5. Petersen, P. et al. Protein phosphatase 2A antagonizes ATM and ATR in a Cdk2- and Cdc7-independent DNA damage checkpoint. Mol. Cell. Biol. 26, 1997–2011 (2006).

    Article  CAS  Google Scholar 

  6. You, Z., Chahwan, C., Bailis, J., Hunter, T. & Russell, P. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol. Cell. Biol. 25, 5363–5379 (2005).

    Article  CAS  Google Scholar 

  7. Almouzni, G. & Mechali, M. Assembly of spaced chromatin involvement of ATP and DNA topoisomerase activity. EMBO J. 7, 4355–4365 (1988).

    Article  CAS  Google Scholar 

  8. Ladoux, B. et al. Fast kinetics of chromatin assembly revealed by single-molecule videomicroscopy and scanning force microscopy. Proc. Natl Acad. Sci. USA 97, 14251–14256 (2000).

    Article  CAS  Google Scholar 

  9. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  Google Scholar 

  10. Pellegrini, M. et al. Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 443, 222–225 (2006).

    Article  CAS  Google Scholar 

  11. Kastan, M. B. & Lim, D. S. The many substrates and functions of ATM. Nature Rev. Mol. Cell. Biol. 1, 179–186 (2000).

    Article  CAS  Google Scholar 

  12. Johnson, S. A., You, Z. & Hunter, T. Monitoring ATM kinase activity in living cells. DNA Repair 6, 1277–1284 (2007).

    Article  CAS  Google Scholar 

  13. Goodarzi, A. A. et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J. 23, 4451–4461 (2004).

    Article  CAS  Google Scholar 

  14. Lukas, C., Falck, J., Bartkova, J., Bartek, J. & Lukas, J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nature Cell Biol. 5, 255–260 (2003).

    Article  CAS  Google Scholar 

  15. McSherry, T. D. & Mueller, P. R. Xenopus Cds1 is regulated by DNA-dependent protein kinase and ATR during the cell cycle checkpoint response to double-stranded DNA ends. Mol. Cell. Biol. 24, 9968–9985 (2004).

    Article  CAS  Google Scholar 

  16. Lou, Z. et al. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol. Cell 21, 187–200 (2006).

    Article  CAS  Google Scholar 

  17. Stucki, M. & Jackson, S. P. γH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair 5, 534–543 (2006).

    Article  CAS  Google Scholar 

  18. Cerosaletti, K., Wright, J. & Concannon, P. Active role for nibrin in the kinetics of atm activation. Mol. Cell. Biol. 26, 1691–1699 (2006).

    Article  CAS  Google Scholar 

  19. Difilippantonio, S. et al. Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nature Cell Biol. 7, 675–685 (2005).

    Article  CAS  Google Scholar 

  20. Berkovich, E., Monnat, R. J. Jr. & Kastan, M. B. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nature Cell Biol. 9, 683–690 (2007).

    Article  CAS  Google Scholar 

  21. Shroff, R. et al. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr. Biol. 14, 1703–1711 (2004).

    Article  CAS  Google Scholar 

  22. Meek, K., Gupta, S., Ramsden, D. A. & Lees-Miller, S. P. The DNA-dependent protein kinase: the director at the end. Immunol. Rev. 200, 132–141 (2004).

    Article  CAS  Google Scholar 

  23. Pazin, M. J., Bhargava, P., Geiduschek, E. P. & Kadonaga, J. T. Nucleosome mobility and the maintenance of nucleosome positioning. Science 276, 809–812 (1997).

    Article  CAS  Google Scholar 

  24. Dupré, A., Boyer-Chatenet, L. & Gautier, J. Two-step activation of ATM by DNA and the Mre11-Rad50-Nbs1 complex. Nature Struct. Mol. Biol. 13, 451–457 (2006).

    Article  Google Scholar 

  25. Robertson, K., Hensey, C. & Gautier, J. Isolation and characterization of Xenopus ATM (X-ATM): expression, localization, and complex formation during oogenesis and early development. Oncogene 18, 7070–7079 (1999).

    Article  CAS  Google Scholar 

  26. Lee, J. H. & Paull, T. T. ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science 308, 551–554 (2005).

    Article  CAS  Google Scholar 

  27. Stucki, M. et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123, 1213–1226 (2005).

    Article  CAS  Google Scholar 

  28. You, Z., Kong, L. & Newport, J. The role of single-stranded DNA and polymerase alpha in establishing the ATR, Hus1 DNA replication checkpoint. J. Biol. Chem. 277, 27088–27093 (2002).

    Article  CAS  Google Scholar 

  29. Hekmat-Nejad, M., You, Z., Yee, M. C., Newport, J. W. & Cimprich, K. A. Xenopus ATR is a replication-dependent chromatin-binding protein required for the DNA replication checkpoint. Curr. Biol. 10, 1565–1573 (2000).

    Article  CAS  Google Scholar 

  30. Dilworth, S. M., Black, S. J. & Laskey, R. A. Two complexes that contain histones are required for nucleosome assembly in vitro: role of nucleoplasmin and N1 in Xenopus egg extracts. Cell 51, 1009–1018 (1987).

    Article  CAS  Google Scholar 

  31. Robinett, C. C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700 (1996).

    Article  CAS  Google Scholar 

  32. Loayza, D. & De Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013–1018 (2003).

    Article  CAS  Google Scholar 

  33. Blow, J. J., Gillespie, P. J., Francis, D. & Jackson, D. A. Replication origins in Xenopus egg extract are 5–15 kilobases apart and are activated in clusters that fire at different times. J. Cell Biol. 152, 15–25 (2001).

    Article  CAS  Google Scholar 

  34. Jackson, D. A. & Pombo, A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 140, 1285–1295 (1998).

    Article  CAS  Google Scholar 

  35. Sullivan, B. & Karpen, G. Centromere identity in Drosophila is not determined in vivo by replication timing. J. Cell Biol. 154, 683–690 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of John Newport. We thank Matthew Weitzman, Walter Eckhart, Paul Russell and Robert Abraham for critical discussions, James Kadonaga, Dominique Ray-Gallet, Geneviève Almouzni, Paul Labhart, Takeo Kiskimoto, Graeme Smith, Mark O'Connor, Aaron Straight, Andrew Murray and Beth Baber for providing valuable reagents, Ramiro Verdun for technical assistance in dot-blotting, and Andrew Dillin for use of his microscopes. Z.Y. was supported by a Pioneer Fund Postdoctoral Fellowship. T.H. is a Frank and Else Schilling American Cancer Society Research Professor. This work was supported by Public Health Service Grants CA14195 and CA80100 from the National Cancer Institute (T.H.).

Author information

Authors and Affiliations

Authors

Contributions

Z.Y. designed and performed the majority of the experiments with contributions from T.H., J.B. and S.J. S.J. provided the Chk2 substrate used in Fig. 2a, and J.B. performed the chromatin fibre immunostaining experiments in Fig. 3c. S.D. provided critical reagents. Z.Y., J.B. and T.H. wrote the paper.

Corresponding author

Correspondence to Tony Hunter.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5, S6 and S7 (PDF 670 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, Z., Bailis, J., Johnson, S. et al. Rapid activation of ATM on DNA flanking double-strand breaks. Nat Cell Biol 9, 1311–1318 (2007). https://doi.org/10.1038/ncb1651

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1651

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing