Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex

Abstract

In Drosophila, the function of the Polycomb group genes (PcGs) and their target sequences (Polycomb response elements (PREs)) is to convey mitotic heritability of transcription programmes — in particular, gene silencing. As part of the mechanisms involved, PREs are thought to mediate this transcriptional memory function by building up higher-order structures in the nucleus. To address this question, we analysed in vivo the three-dimensional structure of the homeotic locus bithorax complex (BX-C) by combining chromosome conformation capture (3C) with fluorescent in situ hybridization (FISH) and FISH immunostaining (FISH-I) analysis. We found that, in the repressed state, all major elements that have been shown to bind PcG proteins, including PREs and core promoters, interact at a distance, giving rise to a topologically complex structure. We show that this structure is important for epigenetic silencing of the BX-C, as we find that major changes in higher-order structures must occur to stably maintain alternative transcription states, whereas histone modification and reduced levels of PcG proteins determine an epigenetic switch that is only partially heritable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Repressed PREs colocalize in PC bodies.
Figure 2: BX-C conformation in staged embryos.
Figure 3: PC depletion affects long-range interactions.
Figure 4: Different BX-C conformations in constitutively active cells.
Figure 5: The BX-C adopts different spatial conformations relative to its transcription state.

Similar content being viewed by others

References

  1. Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell 128, 735–745 (2007).

    Article  CAS  Google Scholar 

  2. Orlando, V. Polycomb, epigenomes and control of cell identity. Cell 112, 591–606 (2003).

    Article  Google Scholar 

  3. Levine, S. S., King, I. F. & Kingston, R. E. Division of labor in polycomb group repression. Trends Biochem. Sci. 29, 478–485 (2004).

    Article  CAS  Google Scholar 

  4. Bantignies, F., Grimaud, C., Lavrov, S., Gabut, M. & Cavalli, G. Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev. 17, 2406–2420 (2003).

    Article  CAS  Google Scholar 

  5. Cleard, F., Moshkin, Y., Karch, F. & Maeda, R. K. Probing long-distance regulatory interactions in the Drosophila melanogaster bithorax complex using Dam identification. Nature Genet. 38, 931–935 (2006).

    Article  CAS  Google Scholar 

  6. Comet, I. et al. PRE-mediated bypass of two Su(Hw) insulators targets PcG proteins to a downstream promoter. Dev. Cell 11, 117–124 (2006).

    Article  CAS  Google Scholar 

  7. Pirrotta, V. PcG complexes and chromatin silencing. Curr. Opin. Genet. Dev. 7, 249–258 (1997).

    Article  CAS  Google Scholar 

  8. Lanzuolo, C. & Orlando, V. The function of the epigenome in cell reprogramming. Cell. Mol. Life Sci. 64, 1043–1062 (2007).

    Article  CAS  Google Scholar 

  9. Petruk, S. et al. Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 127, 1209–1221 (2006).

    Article  CAS  Google Scholar 

  10. Rank, G., Prestel, M. & Paro, R. Transcription through intergenic chromosomal memory elements of the Drosophila bithorax complex correlates with an epigenetic switch. Mol. Cell. Biol. 22, 8026–8034 (2002).

    Article  CAS  Google Scholar 

  11. Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev. 19, 697–708 (2005).

    Article  CAS  Google Scholar 

  12. Ronshaugen, M. & Levine, M. Visualization of trans-homolog enhancer-promoter interactions at the Abd-B Hox locus in the Drosophila embryo. Dev. Cell 7, 925–932 (2004).

    Article  CAS  Google Scholar 

  13. Vazquez, J., Muller, M., Pirrotta, V. & Sedat, J. W. The Mcp element mediates stable long-range chromosome-chromosome interactions in Drosophila. Mol. Biol. Cell 17, 2158–2165 (2006).

    Article  CAS  Google Scholar 

  14. Gasser, S. M. Visualizing chromatin dynamics in interphase nuclei. Science 296, 1412–1416 (2002).

    Article  CAS  Google Scholar 

  15. Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G. & Cremer, T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nature Rev. Genet. 8, 104–115 (2007).

    Article  CAS  Google Scholar 

  16. Misteli, T. Beyond the sequence: cellular organization of genome function. Cell 128, 787–800 (2007).

    Article  CAS  Google Scholar 

  17. Buchenau, P., Hodgson, J., Strutt, H. & Arndt-Jovin, D. J. The distribution of polycomb-group proteins during cell division and development in Drosophila embryos: impact on models for silencing. J. Cell Biol. 141, 469–481 (1998).

    Article  CAS  Google Scholar 

  18. Ficz, G., Heintzmann, R. & Arndt-Jovin, D. J. Polycomb group protein complexes exchange rapidly in living Drosophila. Development 132, 3963–3976 (2005).

    Article  CAS  Google Scholar 

  19. Breiling, A., O'Neill, L. P., D'Eliseo, D., Turner, B. M. & Orlando, V. Epigenome changes in active and inactive polycomb-group-controlled regions. EMBO Rep. 5, 976–982 (2004).

    Article  CAS  Google Scholar 

  20. Breiling, A., Turner, B. M., Bianchi, M. E. & Orlando, V. General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412, 651–655 (2001).

    Article  CAS  Google Scholar 

  21. Beuchle, D., Struhl, G. & Muller, J. Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 128, 993–1004 (2001).

    CAS  PubMed  Google Scholar 

  22. Fukagawa, T. et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nature Cell Biol. 6, 784–791 (2004).

    Article  CAS  Google Scholar 

  23. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005).

    Article  CAS  Google Scholar 

  24. Lippman, Z. & Martienssen, R. The role of RNA interference in heterochromatic silencing. Nature 431, 364–370 (2004).

    Article  CAS  Google Scholar 

  25. Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nature Genet. 30, 329–334 (2002).

    Article  Google Scholar 

  26. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  Google Scholar 

  27. Grimaud, C. et al. RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124, 957–971 (2006).

    Article  CAS  Google Scholar 

  28. Lei, E. P. & Corces, V. G. RNA interference machinery influences the nuclear organization of a chromatin insulator. Nature Genet. 38, 936–941 (2006).

    Article  CAS  Google Scholar 

  29. de Laat, W. & Grosveld, F. Spatial organization of gene expression: the active chromatin hub. Chromosome Res. 11, 447–459 (2003).

    Article  CAS  Google Scholar 

  30. Kumar, P. P. et al. Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nature Cell Biol. 9, 45–56 (2007).

    Article  Google Scholar 

  31. Kurukuti, S. et al. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc. Natl Acad. Sci. USA 103, 10684–10689 (2006).

    Article  CAS  Google Scholar 

  32. Chambeyron, S. & Bickmore, W. A. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119–1130 (2004).

    Article  CAS  Google Scholar 

  33. Chambeyron, S., Da Silva, N. R., Lawson, K. A. & Bickmore, W. A. Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development 132, 2215–2223 (2005).

    Article  CAS  Google Scholar 

  34. Lemaitre et al., Mitotic remodeling of the replicon and chromosome structure. Cell 123, 787–801 (2005)

    Article  CAS  Google Scholar 

  35. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  Google Scholar 

  36. Orlando, V., Jane, E. P., Chinwalla, V., Harte, P. J. & Paro, R. Binding of trithorax and Polycomb proteins to the bithorax complex: dynamic changes during early Drosophila embryogenesis. EMBO J. 17, 5141–5150 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Cavalli for providing lab space and funding to perform the work done by F.B. and V.R., stimulating discussions and constructive criticisms about this manuscript. We thank A. Breiling, G. Oliva, N. Hornig, M. Vivo, Z. Jasencakova, M. Matarazzo and F. Cernilogar for helpful comments on the manuscript and technical advice. We are grateful to A. Ambesi-Impiombato, D. Di Bernardo, A. Buonocore, E. Pirozzi and A. Mas for statistical analysis, and to D. Romano for modelling the 3D image. This work was supported by grants from Fondazione Telethon (TCP00094), La Compagnia di San Paolo, Associazione Italiana Ricerca sul Cancro AIRC, VolkwagenStiftung (I77 996) and The Epigenome Network of Excellence (LSHG-CT-2004-503433) to V.O.; by the National Institutes of Health (HG03143) to J.D. V.R. is supported by the Ministère de la Recherche, F.B. is supported by the CNRS. C.L. and V.O. would like to dedicate this work to the heart and soul of Maria Graziella Persico.

Author information

Authors and Affiliations

Authors

Contributions

C.L. performed all 3C experiments, FISH analysis on Drosophila S2 and S3 cells and part of statistical analysis. V.R. and F.B. performed FISH experiments on embryos and helped C.L. with FISH analysis in S2 and S3 cells. J.D. provided unpublished protocols on 3C technology and suggested crucial control experiments. V.O. designed the experiments, participated in data analysis and presentation, and prepared the manuscript together with C.L. At all stages, all authors discussed the results and gave a substantial contribution to the final manuscript.

Corresponding author

Correspondence to Valerio Orlando.

Supplementary information

Supplementary Information.

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 508 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanzuolo, C., Roure, V., Dekker, J. et al. Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol 9, 1167–1174 (2007). https://doi.org/10.1038/ncb1637

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1637

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing