Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

S-nitrosylation of microtubule-associated protein 1B mediates nitric-oxide-induced axon retraction

Abstract

Treatment of cultured vertebrate neurons with nitric oxide leads to growth-cone collapse, axon retraction and the reconfiguration of axonal microtubules. We show that the light chain of microtubule-associated protein (MAP) 1B is a substrate for S-nitrosylation in vivo, in cultured cells and in vitro. S-nitrosylation occurs at Cys 2457 in the COOH terminus. Nitrosylation of MAP1B leads to enhanced interaction with microtubules and correlates with the inhibition of neuroblastoma cell differentiation. We further show, in dorsal root ganglion neurons, that MAP1B is necessary for neuronal nitric oxide synthase control of growth-cone size, growth-cone collapse and axon retraction. These results reveal an S-nitrosylation-dependent signal-transduction pathway that is involved in regulation of the axonal cytoskeleton and identify MAP1B as a major component of this pathway. We propose that MAP1B acts by inhibiting a microtubule- and dynein-based mechanism that normally prevents axon retraction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LC1 is S-nitrosylated at Cys 2457 and interacts with the NH2 terminus of nNOS.
Figure 2: S-nitrosylation increases microtubule binding of MAP1B.
Figure 3: SNAP-sensitive interaction of LC1 NH2- and COOH-terminal domains.
Figure 4: Nitrosylation of LC1 and differentiation of neuroblastoma cells in response to nNOS activation and inhibition.
Figure 5: NO-induced neurite retraction in neuroblastoma cells expressing wild-type or C2457S mutant LC1.
Figure 6: NO-induced axon retraction is inhibited in MAP1B-deficient DRG neurons.
Figure 7: Growth-cone response to activation and inhibition of nNOS in MAP1B+/+ and MAP1B−/− DRG neurons.
Figure 8: A model for MAP1B-mediated effects of nNOS activation.

Similar content being viewed by others

References

  1. Jaffrey, S. R. & Snyder, S. H. Nitric oxide: a neural messenger. Annu. Rev. Cell Dev. Biol. 11, 417–440 (1995).

    Article  CAS  Google Scholar 

  2. Stamler, J. S., Toone, E. J., Lipton, S. A. & Sucher, N. J. (S)NO signals: translocation, regulation, and a consensus motif. Neuron 18, 691–696 (1997).

    Article  CAS  Google Scholar 

  3. Jaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P. & Snyder, S. H. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nature Cell Biol. 3, 193–197 (2001).

    Article  CAS  Google Scholar 

  4. Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E. & Stamler, J. S. Protein S-nitrosylation: purview and parameters. Nature Rev. Mol. Cell Biol. 6, 150–166 (2005).

    Article  CAS  Google Scholar 

  5. Wu, H. H., Williams, C. V. & McLoon, S. C. Involvement of nitric oxide in the elimination of a transient retinotectal projection in development. Science 265, 1593–1596 (1994).

    Article  CAS  Google Scholar 

  6. Ernst, A. F., Wu, H. H., El-Fakahany, E. E. & McLoon, S. C. NMDA receptor-mediated refinement of a transient retinotectal projection during development requires nitric oxide. J. Neurosci. 19, 229–235 (1999).

    Article  CAS  Google Scholar 

  7. Cramer, K. S., Angelucci, A., Hahm, J. O., Bogdanov, M. B. & Sur, M. A role for nitric oxide in the development of the ferret retinogeniculate projection. J. Neurosci. 16, 7995–8004 (1996).

    Article  CAS  Google Scholar 

  8. Mize, R. R., Wu, H. H., Cork, R. J. & Scheiner, C. A. The role of nitric oxide in development of the patch-cluster system and retinocollicular pathways in the rodent superior colliculus. Prog. Brain Res. 118, 133–152 (1998).

    Article  CAS  Google Scholar 

  9. Hauser, S. L. & Oksenberg, J. R. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 52, 61–76 (2006).

    Article  CAS  Google Scholar 

  10. Keilhoff, G., Fansa, H. & Wolf, G. Differences in peripheral nerve degeneration/regeneration between wild-type and neuronal nitric oxide synthase knockout mice. J. Neurosci. Res. 68, 432–441 (2002).

    Article  CAS  Google Scholar 

  11. Dent, E. W. & Gertler, F. B. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40, 209–227 (2003).

    Article  CAS  Google Scholar 

  12. Hess, D. T., Patterson, S. I., Smith, D. S. & Skene, J. H. Neuronal growth cone collapse and inhibition of protein fatty acylation by nitric oxide. Nature 366, 562–565 (1993).

    Article  CAS  Google Scholar 

  13. Renteria, R. C. & Constantine-Paton, M. Exogenous nitric oxide causes collapse of retinal ganglion cell axonal growth cones in vitro. J. Neurobiol. 29, 415–428 (1996).

    Article  CAS  Google Scholar 

  14. Van Wagenen, S. & Rehder, V. Regulation of neuronal growth cone filopodia by nitric oxide. J. Neurobiol. 39, 168–185 (1999).

    Article  CAS  Google Scholar 

  15. He, Y., Yu, W. & Baas, P. W. Microtubule reconfiguration during axonal retraction induced by nitric oxide. J. Neurosci. 22, 5982–5991 (2002).

    Article  CAS  Google Scholar 

  16. Schoenfeld, T. A. & Obar, R. A. Diverse distribution and function of fibrous microtubule-associated proteins in the nervous system. Int. Rev. Cytol. 151, 67–137 (1994).

    Article  CAS  Google Scholar 

  17. Gordon-Weeks, P. R. & Fischer, I. MAP1B expression and microtubule stability in growing and regenerating axons. Microsc. Res. Tech. 48, 63–74 (2000).

    Article  CAS  Google Scholar 

  18. Soares, S. et al. Phosphorylated MAP1B is induced in central sprouting of primary afferents in response to peripheral injury but not in response to rhizotomy. Eur. J. Neurosci. 16, 593–606 (2002).

    Article  Google Scholar 

  19. Fawcett, J. W., Mathews, G., Housden, E., Goedert, M. & Matus, A. Regenerating sciatic nerve axons contain the adult rather than the embryonic pattern of microtubule associated proteins. Neuroscience 61, 789–804 (1994).

    Article  CAS  Google Scholar 

  20. Ma, D., Nothias, F., Boyne, L. J. & Fischer, I. Differential regulation of microtubule-associated protein 1B (MAP1B) in rat CNS and PNS during development. J. Neurosci. Res. 49, 319–332 (1997).

    Article  CAS  Google Scholar 

  21. Tögel, M., Wiche, G. & Propst, F. Novel features of the light chain of microtubule-associated protein MAP1B: microtubule stabilization, self interaction, actin filament binding, and regulation by the heavy chain. J. Cell Biol. 143, 695–707 (1998).

    Article  Google Scholar 

  22. Meixner, A. et al. MAP1B is required for axon guidance and is involved in the development of the central and peripheral nervous system. J. Cell Biol. 151, 1169–1178 (2000).

    Article  CAS  Google Scholar 

  23. Gonzalez-Billault, C. et al. Perinatal lethality of microtubule-associated protein 1B-deficient mice expressing alternative isoforms of the protein at low levels. Mol. Cell. Neurosci. 16, 408–421 (2000).

    Article  CAS  Google Scholar 

  24. Takei, Y., Teng, J., Harada, A. & Hirokawa, N. Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J. Cell Biol. 150, 989–1000 (2000).

    Article  CAS  Google Scholar 

  25. Teng, J. et al. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J. Cell Biol. 155, 65–76 (2001).

    Article  CAS  Google Scholar 

  26. Gonzalez-Billault, C., Avila, J. & Caceres, A. Evidence for the role of MAP1B in axon formation. Mol. Biol. Cell 12, 2087–2098 (2001).

    Article  CAS  Google Scholar 

  27. Bouquet, C. et al. Microtubule-associated protein 1B controls directionality of growth cone migration and axonal branching in regeneration of adult dorsal root ganglia neurons. J. Neurosci. 24, 7204–7213 (2004).

    Article  CAS  Google Scholar 

  28. Kaytor, M. D. & Orr, H. T. RNA targets of the fragile X protein. Cell 107, 555–557 (2001).

    Article  CAS  Google Scholar 

  29. Allen, E. et al. Gigaxonin-controlled degradation of MAP1B light chain is critical to neuronal survival. Nature 438, 224–228 (2005).

    Article  CAS  Google Scholar 

  30. Opal, P. et al. Mapmodulin/leucine-rich acidic nuclear protein binds the light chain of microtubule-associated protein 1B and modulates neuritogenesis. J. Biol. Chem. 278, 34691–34699 (2003).

    Article  CAS  Google Scholar 

  31. Seog, D. H. Glutamate receptor-interacting protein 1 protein binds to the microtubule-associated protein. Biosci. Biotechnol. Biochem. 68, 1808–1810 (2004).

    Article  CAS  Google Scholar 

  32. Longhurst, D. M., Watanabe, M., Rothstein, J. D. & Jackson, M. Interaction of PDZRhoGEF with microtubule-associated protein 1 light chains: link between microtubules, actin cytoskeleton, and neuronal polarity. J. Biol. Chem. 281, 12030–12040 (2006).

    Article  CAS  Google Scholar 

  33. Noble, M., Lewis, S. A. & Cowan, N. J. The microtubule binding domain of microtubule-associated protein MAP1B contains a repeated sequence motif unrelated to that of MAP2 and tau. J. Cell Biol. 109, 3367–3376 (1989).

    Article  CAS  Google Scholar 

  34. Noiges, R. et al. MAP1A and MAP1B: light chains determine distinct functional properties. J. Neurosci. 22, 2106–2114 (2002).

    Article  CAS  Google Scholar 

  35. Kojima, H. et al. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem. 70, 2446–2453 (1998).

    Article  CAS  Google Scholar 

  36. Jimenez-Mateos, E. M., Gonzalez-Billault, C., Dawson, H. N., Vitek, M. P. & Avila, J. Role of MAP1B in axonal retrograde transport of mitochondria. Biochem. J. 397, 53–59 (2006).

    Article  CAS  Google Scholar 

  37. Ernst, A. F., Gallo, G., Letourneau, P. C. & McLoon, S. C. Stabilization of growing retinal axons by the combined signaling of nitric oxide and brain-derived neurotrophic factor. J. Neurosci. 20, 1458–1469 (2000).

    Article  CAS  Google Scholar 

  38. Pigino, G., Paglini, G., Ulloa, L., Avila, J. & Cáceres, A. Analysis of the expression, distribution and function of cyclin dependent kinase (cdk5) in developing cerebellar macroneurons. J. Cell Sci. 110, 257–270 (1997).

    CAS  PubMed  Google Scholar 

  39. Ahmad, F. J. et al. Motor proteins regulate force interactions between microtubules and microfilaments in the axon. Nature Cell Biol. 2, 276–280 (2000).

    Article  CAS  Google Scholar 

  40. Baas, P. W. & Ahmad, F. J. Force generation by cytoskeletal motor proteins as a regulator of axonal elongation and retraction. Trends Cell Biol. 11, 244–249 (2001).

    Article  CAS  Google Scholar 

  41. Billuart, P., Winter, C. G., Maresh, A., Zhao, X. & Luo, L. Regulating axon branch stability: the role of p190 RhoGAP in repressing a retraction signaling pathway. Cell 107, 195–207 (2001).

    Article  CAS  Google Scholar 

  42. Wu, K. Y. et al. Local translation of RhoA regulates growth cone collapse. Nature 436, 1020–1024 (2005).

    Article  CAS  Google Scholar 

  43. Orban-Nemeth, Z., Simader, H., Badurek, S., Trancikova, A. & Propst, F. Microtubule-associated protein 1S, a short and ubiquitously expressed member of the microtubule-associated protein 1 family. J. Biol. Chem. 280, 2257–2265 (2005).

    Article  CAS  Google Scholar 

  44. Ding, J. et al. Gene targeting of GAN in mouse causes a toxic accumulation of microtubule-associated protein 8 and impaired retrograde axonal transport. Hum. Mol. Genet. 15, 1451–1463 (2006).

    Article  CAS  Google Scholar 

  45. Tonge, D. A. et al. Effects of extracellular matrix components on axonal outgrowth from peripheral nerves of adult animals in vitro. Exp. Neurol. 146, 81–90 (1997).

    Article  CAS  Google Scholar 

  46. Bottenstein, J. E. & Sato, G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. Natl Acad. Sci. USA 76, 514–517 (1979).

    Article  CAS  Google Scholar 

  47. Jaffrey, S. R. Detection and characterization of protein nitrosothiols. Methods Enzymol. 396, 105–118 (2005).

    Article  Google Scholar 

  48. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

    Google Scholar 

  49. Steffen, W. et al. The involvement of the intermediate chain of cytoplasmic dynein in binding the motor complex to membranous organelles of Xenopus oocytes. Mol. Biol. Cell 8, 2077–2088 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grant F607 from the Austrian Science Fund (F.W.F.; to F.P.); grant WFL-FR-010/06 of the Wings for Life Spinal Cord Research Foundation (to F.P.); grant IRME 2003-06 of the Institut de Recherche sur la Moelle Épinière (to F.N.); grant J-15/05 of the City of Vienna and the Austrian Academy of Sciences (to F.P.); and the Austrian Exchange Service (ÖAD), Program Amadée (project number 15/2004; to F.P. and F.N.). We are grateful to C. Bouquet and L. Janda for introducing us to DRG neuron culture and the biotin switch assay, respectively. We also thank B. Mayer for the cDNA clone of nNOS and the anti-nNOS antibody.

Author information

Authors and Affiliations

Authors

Contributions

H.S. and A.T. performed experiments, analysed data and planned the project; L.D. and W.K. performed experiments and analysed data; J.F. performed experiments and planned the project; J.K. and A.M. peformed experiments; F.N. planned the project; F.P. planned the project and wrote the paper.

Corresponding author

Correspondence to Friedrich Propst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5 and S6 (PDF 617 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroissnigg, H., Trančíková, A., Descovich, L. et al. S-nitrosylation of microtubule-associated protein 1B mediates nitric-oxide-induced axon retraction. Nat Cell Biol 9, 1035–1045 (2007). https://doi.org/10.1038/ncb1625

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1625

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing