Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus

Abstract

Homologous recombination (HR) is crucial for maintaining genome integrity by repairing DNA double-strand breaks (DSBs) and rescuing collapsed replication forks. In contrast, uncontrolled HR can lead to chromosome translocations, loss of heterozygosity, and deletion of repetitive sequences. Controlled HR is particularly important for the preservation of repetitive sequences of the ribosomal gene (rDNA) cluster. Here we show that recombinational repair of a DSB in rDNA in Saccharomyces cerevisiae involves the transient relocalization of the lesion to associate with the recombination machinery at an extranucleolar site. The nucleolar exclusion of Rad52 recombination foci entails Mre11 and Smc5–Smc6 complexes and depends on Rad52 SUMO (small ubiquitin-related modifier) modification. Remarkably, mutations that abrogate these activities result in the formation of Rad52 foci within the nucleolus and cause rDNA hyperrecombination and the excision of extrachromosomal rDNA circles. Our study also suggests a key role of sumoylation for nucleolar dynamics, perhaps in the compartmentalization of nuclear activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of checkpoint and repair proteins relative to the nucleolus.
Figure 2: Localization of an I-SceI-induced DSB in the rDNA.
Figure 3: Rad52 foci in the nucleolus in Smc5–Smc6 complex mutants.
Figure 4: RAD52-dependent formation of ERCs at the rDNA locus in smc6-9 cells.
Figure 5: Genetic requirements for Rad52 focus formation in the nucleolus.
Figure 6: Dynamics of the rDNA locus.

Similar content being viewed by others

References

  1. Leger-Silvestre, I., Trumtel, S., Noaillac-Depeyre, J. & Gas, N. Functional compartmentalization of the nucleus in the budding yeast Saccharomyces cerevisiae. Chromosoma 108, 103–113 (1999).

    Article  CAS  Google Scholar 

  2. Michel, A. H., Kornmann, B., Dubrana, K. & Shore, D. Spontaneous rDNA copy number variation modulates Sir2 levels and epigenetic gene silencing. Genes Dev. 19, 1199–1210 (2005).

    Article  CAS  Google Scholar 

  3. Park, P. U., Defossez, P. A. & Guarente, L. Effects of mutations in DNA repair genes on formation of ribosomal DNA circles and life span in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 3848–3856 (1999).

    Article  CAS  Google Scholar 

  4. Kobayashi, T., Heck, D. J., Nomura, M. & Horiuchi, T. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev. 12, 3821–3830 (1998).

    Article  CAS  Google Scholar 

  5. Gangloff, S., Zou, H. & Rothstein, R. Gene conversion plays the major role in controlling the stability of large tandem repeats in yeast. EMBO J. 15, 1715–1725 (1996).

    Article  CAS  Google Scholar 

  6. Warner, J. R., Vilardell, J. & Sohn, J. H. Economics of ribosome biosynthesis. Cold Spring Harb. Symp. Quant. Biol. 66, 567–574 (2001).

    Article  CAS  Google Scholar 

  7. Liu, Y., Li, M., Lee, E. Y. & Maizels, N. Localization and dynamic relocalization of mammalian Rad52 during the cell cycle and in response to DNA damage. Curr. Biol. 9, 975–978 (1999).

    Article  CAS  Google Scholar 

  8. Lisby, M., Rothstein, R. & Mortensen, U. H. Rad52 forms DNA repair and recombination centers during S phase. Proc. Natl Acad. Sci. USA 98, 8276–8282 (2001).

    Article  CAS  Google Scholar 

  9. Schimmang, T., Tollervey, D., Kern, H., Frank, R. & Hurt, E. C. A yeast nucleolar protein related to mammalian fibrillarin is associated with small nucleolar RNA and is essential for viability. EMBO J. 8, 4015–4024 (1989).

    Article  CAS  Google Scholar 

  10. Lisby, M., Mortensen, U. H. & Rothstein, R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nature Cell Biol. 5, 572–577 (2003).

    Article  CAS  Google Scholar 

  11. Lisby, M., Barlow, J. H., Burgess, R. C. & Rothstein, R. Choreography of the DNA damage response; spatiotemporal relationships among checkpoint and repair proteins. Cell 118, 699–713 (2004).

    Article  CAS  Google Scholar 

  12. de Jager, M. et al. Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol. Cell 8, 1129–1135 (2001).

    Article  CAS  Google Scholar 

  13. Krogh, B. & Symington, L. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233–271 (2004).

    Article  CAS  Google Scholar 

  14. Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

    Article  CAS  Google Scholar 

  15. Torres-Rosell, J. et al. Anaphase onset before complete DNA replication with intact checkpoint responses. Science 315, 1411–1415 (2007).

    Article  CAS  Google Scholar 

  16. Fujioka, Y., Kimata, Y., Nomaguchi, K., Watanabe, K. & Kohno, K. Identification of a novel non-structural maintenance of chromosomes (SMC) component of the SMC5–SMC6 complex involved in DNA repair. J. Biol. Chem. 277, 21585–21591 (2002).

    Article  CAS  Google Scholar 

  17. Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA 102, 4777–4782 (2005).

    Article  CAS  Google Scholar 

  18. Losada, A. & Hirano, T. Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev. 19, 1269–1287 (2005).

    Article  CAS  Google Scholar 

  19. Aragon, L. Sumoylation: a new wrestler in the DNA repair ring. Proc. Natl Acad. Sci. USA 102, 4661–4662 (2005).

    Article  CAS  Google Scholar 

  20. Torres-Rosell, J. et al. SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nature Cell Biol. 7, 412–419 (2005).

    Article  CAS  Google Scholar 

  21. Kobayashi, T., Horiuchi, T., Tongaonkar, P., Vu, L. & Nomura, M. SIR2 regulates recombination between different rDNA repeats, but not recombination within individual rRNA genes in yeast. Cell 117, 441–453 (2004).

    Article  CAS  Google Scholar 

  22. Ivessa, A. S., Zhou, J. Q. & Zakian, V. A. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100, 479–489 (2000).

    Article  CAS  Google Scholar 

  23. Eladad, S. et al. Intra-nuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification. Hum. Mol. Genet. 14, 1351–1365 (2005).

    Article  CAS  Google Scholar 

  24. Shen, T. H., Lin, H. K., Scaglioni, P. P., Yung, T. M. & Pandolfi, P. P. The mechanisms of PML-nuclear body formation. Mol. Cell 24, 331–339 (2006).

    Article  CAS  Google Scholar 

  25. Lin, D. Y. et al. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell 24, 341–354 (2006).

    Article  CAS  Google Scholar 

  26. Sacher, M., Pfander, B., Hoege, C. & Jentsch, S. Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nature Cell Biol. 8, 1284–1290 (2006).

    Article  CAS  Google Scholar 

  27. De Piccoli, G. et al. Smc5–Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nature Cell Biol. 8, 1032–1034 (2006).

    Article  CAS  Google Scholar 

  28. Betts Lindroos, H. et al. Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol. Cell 22, 755–767 (2006).

    Article  Google Scholar 

  29. Veaute, X. et al. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423, 309–312 (2003).

    Article  CAS  Google Scholar 

  30. Torres, J. Z., Schnakenberg, S. L. & Zakian, V. A. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol. Cell. Biol. 24, 3198–3212 (2004).

    Article  CAS  Google Scholar 

  31. Hays, S. L., Firmenich, A. A. & Berg, P. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc. Natl Acad. Sci. USA 92, 6925–6929 (1995).

    Article  CAS  Google Scholar 

  32. Davis, A. P. & Symington, L. S. The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing. Genetics 159, 515–525 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ho, J. C., Warr, N. J., Shimizu, H. & Watts, F. Z. SUMO modification of Rad22, the Schizosaccharomyces pombe homologue of the recombination protein Rad52. Nucleic Acids Res. 29, 4179–4186 (2001).

    Article  CAS  Google Scholar 

  34. Reid, R., Lisby, M. & Rothstein, R. Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR. Methods Enzymol. 350, 258–277 (2002).

    Article  CAS  Google Scholar 

  35. Antúnez de Mayolo, A. et al. Multiple start codons and phosphorylation result in discrete Rad52 protein species. Nucleic Acids Res. 34, 2587–2597 (2006).

    Article  Google Scholar 

  36. Erdeniz, N., Mortensen, U. H. & Rothstein, R. Cloning-free PCR-based allele replacement methods. Genome Res. 7, 1174–1183 (1997).

    Article  CAS  Google Scholar 

  37. Merker, R. J. & Klein, H. L. hpr1Δ affects ribosomal DNA recombination and cell life span in Saccharomyces cerevisiae. Mol. Cell. Biol. 22, 421–429 (2002).

    Article  CAS  Google Scholar 

  38. Versini, G. et al. The yeast Sgs1 helicase is differentially required for genomic and ribosomal DNA replication. EMBO J. 22, 1939–1949 (2003).

    Article  CAS  Google Scholar 

  39. Moore, C. W. et al. DNA damage-inducible and RAD52-independent repair of DNA double-strand breaks in Saccharomyces cerevisiae. Genetics 154, 1085–1099 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Wagner, R. Tsien, M. Jasin and K. Nasmyth for plasmids and strains, and members of the Rothstein, Aragon, Jentsch and Lisby laboratories for helpful discussions on this work. This work was supported by grants to R.R. from the NIH (GM50237 and GM67055), the Human Frontiers Science Program (RGP0238/2001) and the Tonnesen Foundation (RGP0238/2001), to M.L. from the Danish Natural Science Research Council, the Alfred Benzon Foundation, the Villum Kann Rasmussen Foundation, and to N.E.B. from the Lundbeck Foundation. The Aragon laboratory was supported by the Medical Research Council, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lisby.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figure S1, S2, S3, S4, S5, Table S1 and Supplementary Methods (PDF 706 kb)

Supplementary Information

Supplementary Movie 1 (MOV 215 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres-Rosell, J., Sunjevaric, I., De Piccoli, G. et al. The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol 9, 923–931 (2007). https://doi.org/10.1038/ncb1619

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1619

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing