Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion

Abstract

Invasive cell migration through tissue barriers requires pericellular remodelling of extracellular matrix (ECM) executed by cell-surface proteases, particularly membrane-type-1 matrix metalloproteinase (MT1-MMP/MMP-14). Using time-resolved multimodal microscopy, we show how invasive HT-1080 fibrosarcoma and MDA-MB-231 breast cancer cells coordinate mechanotransduction and fibrillar collagen remodelling by segregating the anterior force-generating leading edge containing β1 integrin, MT1-MMP and F-actin from a posterior proteolytic zone executing fibre breakdown. During forward movement, sterically impeding fibres are selectively realigned into microtracks of single-cell calibre. Microtracks become expanded by multiple following cells by means of the large-scale degradation of lateral ECM interfaces, ultimately prompting transition towards collective invasion similar to that in vivo. Both ECM track widening and transition to multicellular invasion are dependent on MT1-MMP-mediated collagenolysis, shown by broad-spectrum protease inhibition and RNA interference. Thus, invasive migration and proteolytic ECM remodelling are interdependent processes that control tissue micropatterning and macropatterning and, consequently, individual and collective cell migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enhanced collagenolysis and migration of HT-1080 cells in 3D collagen lattices after overexpression of MT1-MMP.
Figure 2: Distinct zones for adhesion, MT1-MMP location and collagenolysis in single migrating cells.
Figure 3: Real-time detection of collagen fibre cleavage and displacement.
Figure 4: Cell deformation after inhibition of pericellular collagenolysis.
Figure 5: Proteolytic and non-proteolytic migration in high-density collagen spheroid model.
Figure 6: Large-scale removal of ECM layers during multicellular invasion.
Figure 7: Requirement for pericellular collagenolysis in invasive multicellular but not single-cell migration.
Figure 8: Abrogation of collagenolytic track formation and collective invasion after knockdown of MT1-MMP in HT-MT1 cells.

Similar content being viewed by others

References

  1. Stetler-Stevenson, W. G., Liotta, L. A. & Kleiner, D. E. Jr. Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J. 7, 1434–1441 (1993).

    Article  CAS  Google Scholar 

  2. Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A. & Horwitz, A. F. Integrin-ligand binding properties govern cell migration speed through cell–substratum adhesiveness. Nature 385, 537–540 (1997).

    Article  CAS  Google Scholar 

  3. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Rev. Cancer 3, 362–374 (2003).

    Article  CAS  Google Scholar 

  4. Sternlicht, M. D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell De v. Biol. 17, 463–516 (2001).

    Article  CAS  Google Scholar 

  5. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002).

    Article  CAS  Google Scholar 

  6. Zhai, Y. et al. Expression of membrane type 1 matrix metalloproteinase is associated with cervical carcinoma progression and invasion. Cancer Res. 65, 6543–6550 (2005).

    Article  CAS  Google Scholar 

  7. Basbaum, C. B. & Werb, Z. Focalized proteolysis: spatial and temporal regulation of extracellular matrix degradation at the cell surface. Curr. Opin. Cell Biol. 8, 731–738 (1996).

    Article  CAS  Google Scholar 

  8. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer 2, 161–174 (2002).

    Article  CAS  Google Scholar 

  9. Hotary, K., Allen, E., Punturieri, A., Yana, I. & Weiss, S. J. Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J. Cell Biol. 149, 1309–1323 (2000).

    Article  CAS  Google Scholar 

  10. Sabeh, F. et al. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J. Cell Biol. 167, 769–781 (2004).

    Article  CAS  Google Scholar 

  11. Uekita, T., Itoh, Y., Yana, I., Ohno, H. & Seiki, M. Cytoplasmic tail-dependent internalization of membrane-type 1 matrix metalloproteinase is important for its invasion-promoting activity. J. Cell Biol. 155, 1345–1356 (2001).

    Article  CAS  Google Scholar 

  12. Olson, M. W., Gervasi, D. C., Mobashery, S. & Fridman, R. Kinetic analysis of the binding of human matrix metalloproteinase-2 and -9 to tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. J. Biol. Chem. 272, 29975–29983 (1997).

    Article  CAS  Google Scholar 

  13. Wolf, K. et al. Compensation mechanism in tumor cell migration: mesenchymal–amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003).

    Article  CAS  Google Scholar 

  14. Ellerbroek, S. M., Wu, Y. I., Overall, C. M. & Stack, M. S. Functional interplay between type I collagen and cell surface matrix metalloproteinase activity. J. Biol. Chem. 276, 24833–24842 (2001).

    Article  CAS  Google Scholar 

  15. Artym, V. V., Zhang, Y., Seillier-Moiseiwitsch, F., Yamada, K. M. & Mueller, S. C. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res. 66, 3034–3043 (2006).

    Article  CAS  Google Scholar 

  16. Furmaniak-Kazmierczak, E., Crawley, S. W., Carter, R. L., Maurice, D. H. & Cote, G. P. Formation of extracellular matrix-digesting invadopodia by primary aortic smooth muscle cells. Circ. Res. 100, 1328–1336 (2007).

    Article  CAS  Google Scholar 

  17. Galvez, B. G., Matias-Roman, S., Yanez-Mo, M., Sanchez-Madrid, F. & Arroyo, A. G. ECM regulates MT1-MMP localization with β1 or αvβ3 integrins at distinct cell compartments modulating its internalization and activity on human endothelial cells. J. Cell Biol. 159, 509–521 (2002).

    Article  CAS  Google Scholar 

  18. Holmbeck, K. et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99, 81–92 (1999).

    Article  CAS  Google Scholar 

  19. Hotary, K. B. et al. Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114, 33–45 (2003).

    Article  CAS  Google Scholar 

  20. Deryugina, E. I., Luo, G. X., Reisfeld, R. A., Bourdon, M. A. & Strongin, A. Tumor cell invasion through matrigel is regulated by activated matrix metalloproteinase-2. Anticancer Res. 17, 3201–3210 (1997).

    CAS  PubMed  Google Scholar 

  21. Will, H., Atkinson, S. J., Butler, G. S., Smith, B. & Murphy, G. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J. Biol. Chem. 271, 17119–17123 (1996).

    Article  CAS  Google Scholar 

  22. Yamada, K. M. et al. Monoclonal antibody and synthetic peptide inhibitors of human tumor cell migration. Cancer Res. 50, 4485–4496 (1990).

    CAS  PubMed  Google Scholar 

  23. Hegerfeldt, Y., Tusch, M., Brocker, E. B. & Friedl, P. Collective cell movement in primary melanoma explants: plasticity of cell–cell interaction, β1-integrin function, and migration strategies. Cancer Res. 62, 2125–2130 (2002).

    CAS  PubMed  Google Scholar 

  24. Bell, C. D. & Waizbard, E. Variability of cell size in primary and metastatic human breast carcinoma. Invasion Metastasis 6, 11–20 (1986).

    CAS  PubMed  Google Scholar 

  25. Wicki, A. et al. Tumor invasion in the absence of epithelial–mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9, 261–272 (2006).

    Article  CAS  Google Scholar 

  26. McNiff, J. M., Subtil, A., Cowper, S. E., Lazova, R. & Glusac, E. J. Cellular digital fibromas: distinctive CD34-positive lesions that may mimic dermatofibrosarcoma protuberans. J. Cutan. Pathol. 32, 413–418 (2005).

    Article  Google Scholar 

  27. Nabeshima, K. et al. Front-cell-specific expression of membrane-type 1 matrix metalloproteinase and gelatinase A during cohort migration of colon carcinoma cells induced by hepatocyte growth factor/scatter factor. Cancer Res. 60, 3364–3369 (2000).

    CAS  PubMed  Google Scholar 

  28. Sameni, M., Dosescu, J., Moin, K. & Sloane, B. F. Functional imaging of proteolysis: stromal and inflammatory cells increase tumor proteolysis. Mol. Imaging 2, 159–175 (2003).

    Article  Google Scholar 

  29. Bravo-Cordero, J. J. et al. MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J. 26, 1499–1510 (2007).

    Article  CAS  Google Scholar 

  30. Christiansen, J. J. & Rajasekaran, A. K. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66, 8319–8326 (2006).

    Article  CAS  Google Scholar 

  31. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  32. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  Google Scholar 

  33. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell–matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    Article  CAS  Google Scholar 

  34. Belkin, A. M. et al. Matrix-dependent proteolysis of surface transglutaminase by membrane-type metalloproteinase regulates cancer cell adhesion and locomotion. J. Biol. Chem. 276, 18415–18422 (2001).

    Article  CAS  Google Scholar 

  35. Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S. & Sahai, E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr. Biol. 16, 1515–1523 (2006).

    Article  CAS  Google Scholar 

  36. Saltel, F., Destaing, O., Bard, F., Eichert, D. & Jurdic, P. Apatite-mediated actin dynamics in resorbing osteoclasts. Mol. Biol. Cell 15, 5231–5241 (2004).

    Article  CAS  Google Scholar 

  37. Nisato, R. E. et al. Dissecting the role of matrix metalloproteinases (MMP) and integrin αvβ3 in angiogenesis in vitro: absence of hemopexin C domain bioactivity, but membrane-type 1-MMP and αvβ3 are critical. Cancer Res. 65, 9377–9387 (2005).

    Article  CAS  Google Scholar 

  38. Tam, E. M., Wu, Y. I., Butler, G. S., Stack, M. S. & Overall, C. M. Collagen binding properties of the membrane type-1 matrix metalloproteinase (MT1-MMP) hemopexin C domain. The ectodomain of the 44-kDa autocatalytic product of MT1-MMP inhibits cell invasion by disrupting native type I collagen cleavage. J. Biol. Chem. 277, 39005–39014 (2002).

    Article  CAS  Google Scholar 

  39. Chen, W. T. & Wang, J. Y. Specialized surface protrusions of invasive cells, invadopodia and lamellipodia, have differential MT1-MMP, MMP-2, and TIMP-2 localization. Ann. NY Acad. Sci. 878, 361–371 (1999).

    Article  CAS  Google Scholar 

  40. Filla, M. B. et al. Dynamic imaging of cell, extracellular matrix, and tissue movements during avian vertebral axis patterning. Birth Defects Res. C Embryo Today 72, 267–276 (2004).

    Article  CAS  Google Scholar 

  41. Petroll, W. M., Cavanagh, H. D. & Jester, J. V. Dynamic three-dimensional visualization of collagen matrix remodeling and cytoskeletal organization in living corneal fibroblasts. Scanning 26, 1–10 (2004).

    Article  Google Scholar 

  42. Takino, T. et al. Membrane-type 1 matrix metalloproteinase modulates focal adhesion stability and cell migration. Exp. Cell Res. 312, 1381–1389 (2006).

    Article  CAS  Google Scholar 

  43. Wolf, K., Muller, R., Borgmann, S., Brocker, E. B. & Friedl, P. Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102, 3262–3269 (2003).

    Article  CAS  Google Scholar 

  44. Sahai, E. & Marshall, C. J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biol. 5, 711–719 (2003).

    Article  CAS  Google Scholar 

  45. Zaman, M. H. et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell–matrix adhesion and proteolysis. Proc. Natl Acad. Sci. USA 103, 10889–10894 (2006).

    Article  CAS  Google Scholar 

  46. Haas, P. & Gilmour, D. Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev. Cell 10, 673–680 (2006).

    Article  CAS  Google Scholar 

  47. Sympson, C. J. et al. Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J. Cell Biol. 125, 681–693 (1994).

    Article  CAS  Google Scholar 

  48. Hiraoka, N., Allen, E., Apel, I. J., Gyetko, M. R. & Weiss, S. J. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95, 365–377 (1998).

    Article  CAS  Google Scholar 

  49. Billinghurst, R. C. et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J. Clin. Invest. 99, 1534–1545 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Ott, M. Kuhn and A. Staudigel for excellent technical assistance; L. King for supplying COL2¾Cshort antibody; British Biotech Inc., UK, for supplying BB-2516; R. Fridman for supplying recombinant TIMP-1 and TIMP-2; E. Deryugina and A. Y. Strongin for providing HT-1080 cell lines; D. Pei for supplying human MT1-MMP cDNA; K. Müller-Hermelink for providing access to the confocal facility; and G. Krohne for providing access to electron microscopy. This work was supported by the Deutsche Forschungsgemeinschaft (FR 1155/7-1) and Deutsche Krebshilfe (AZ 106950). C.O. was supported by a Canada Research Chair Grant in Metalloproteinase Proteomics and Systems Biology, and E.T. by a CIHR Cell Signals Training Grant. S.S., Y.W. and Y.L. were supported by a research grant from NIH (RO1 CA86984).

Author information

Authors and Affiliations

Authors

Contributions

P.F. and K.W. conceived and designed the experiments. K.W., Y.W., Y.L. and E.T. performed the experiments. K.W., P.F. and J.G. analysed the data. S.S., J.G. and C.O. contributed reagents, material and analysis tools. K.W. and P.F. wrote the paper. All authors read and corrected the manuscript.

Corresponding author

Correspondence to Peter Friedl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, K., Wu, Y., Liu, Y. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9, 893–904 (2007). https://doi.org/10.1038/ncb1616

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1616

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing