Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis

Abstract

In dividing cells, kinetochores couple chromosomes to the tips of growing and shortening microtubule fibres1,2 and tension at the kinetochore–microtubule interface promotes fibre elongation3,4,5,6. Tension-dependent microtubule fibre elongation is thought to be essential for coordinating chromosome alignment and separation1,3,7,8,9,10, but the mechanism underlying this effect is unknown. Using optical tweezers, we applied tension to a model of the kinetochore–microtubule interface composed of the yeast Dam1 complex11,12,13 bound to individual dynamic microtubule tips14. Higher tension decreased the likelihood that growing tips would begin to shorten, slowed shortening, and increased the likelihood that shortening tips would resume growth. These effects are similar to the effects of tension on kinetochore-attached microtubule fibres in many cell types, suggesting that we have reconstituted a direct mechanism for microtubule-length control in mitosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recording microtubule dynamics with tension applied by an optical trapping-based force clamp.
Figure 2: Additional records showing microtubule dynamics with applied tension.
Figure 3: Tension slows shortening, inhibits catastrophe and promotes rescue.
Figure 4: Changing the level of tension during movement immediately alters shortening speed.

Similar content being viewed by others

References

  1. Inoue, S. & Salmon, E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6, 1619–1640 (1995).

    Article  CAS  Google Scholar 

  2. Koshland, D. E., Mitchison, T. J. & Kirschner, M. W. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331, 499–504 (1988).

    Article  CAS  Google Scholar 

  3. Nicklas, R. B. The forces that move chromosomes in mitosis. Annu. Rev. Biophys. Biophys. Chem. 17, 431–449 (1988).

    Article  CAS  Google Scholar 

  4. Skibbens, R. V. & Salmon, E. D. Micromanipulation of chromosomes in mitotic vertebrate tissue cells: tension controls the state of kinetochore movement. Exp. Cell Res. 235, 314–324 (1997).

    Article  CAS  Google Scholar 

  5. Khodjakov, A. & Rieder, C. L. Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome. J. Cell Biol. 135, 315–327 (1996).

    Article  CAS  Google Scholar 

  6. Skibbens, R. V., Rieder, C. L. & Salmon, E. D. Kinetochore motility after severing between sister centromeres using laser microsurgery: evidence that kinetochore directional instability and position is regulated by tension. J. Cell Sci. 108, 2537–2548 (1995).

    CAS  PubMed  Google Scholar 

  7. Goshima, G., Wollman, R., Stuurman, N., Scholey, J. M. & Vale, R. D. Length control of the metaphase spindle. Curr. Biol. 15, 1979–1988 (2005).

    Article  CAS  Google Scholar 

  8. Gardner, M. K. et al. Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. Mol. Biol. Cell 16, 3764–3775 (2005).

    Article  CAS  Google Scholar 

  9. Skibbens, R. V., Skeen, V. P. & Salmon, E. D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J. Cell Biol. 122, 859–875 (1993).

    Article  CAS  Google Scholar 

  10. Civelekoglu-Scholey, G., Sharp, D. J., Mogilner, A. & Scholey, J. M. Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. Biophys. J. 90, 3966–3982 (2006).

    Article  CAS  Google Scholar 

  11. Cheeseman, I. M., Drubin, D. G. & Barnes, G. Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J. Cell Biol. 157, 199–203 (2002).

    Article  CAS  Google Scholar 

  12. Miranda, J. J., De Wulf, P., Sorger, P. K. & Harrison, S. C. The yeast DASH complex forms closed rings on microtubules. Nature Struct. Mol. Biol. 12, 138–143 (2005).

    Article  CAS  Google Scholar 

  13. Westermann, S. et al. Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1 ring complex. Mol. Cell 17, 277–290 (2005).

    Article  CAS  Google Scholar 

  14. Asbury, C. L., Gestaut, D. R., Powers, A. F., Franck, A. D. & Davis, T. N. The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc. Natl Acad. Sci. USA 103, 9873–9878 (2006).

    Article  CAS  Google Scholar 

  15. Inoue, S. & Ritter, H., Jr. Dynamics of mitotic spindle organization and function. Soc. Gen. Physiol. Ser. 30, 3–30 (1975).

    CAS  PubMed  Google Scholar 

  16. Nicklas, R. B. Measurements of the force produced by the mitotic spindle in anaphase. J. Cell Biol. 97, 542–548 (1983).

    Article  CAS  Google Scholar 

  17. Walker, R. A. et al. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J. Cell Biol. 107, 1437–1448 (1988).

    Article  CAS  Google Scholar 

  18. Maddox, P., Straight, A., Coughlin, P., Mitchison, T. J. & Salmon, E. D. Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles: implications for spindle mechanics. J. Cell Biol. 162, 377–382 (2003).

    Article  CAS  Google Scholar 

  19. Andrews, P. D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253–268 (2004).

    Article  CAS  Google Scholar 

  20. Cimini, D., Wan, X., Hirel, C. B. & Salmon, E. D. Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr. Biol. 16, 1711–1718 (2006).

    Article  CAS  Google Scholar 

  21. Pinsky, B. A., Kung, C., Shokat, K. M. & Biggins, S. The Ipl1–Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nature Cell Biol. 8, 78–83 (2006).

    Article  CAS  Google Scholar 

  22. Dogterom, M. & Yurke, B. Measurement of the force-velocity relation for growing microtubules. Science 278, 856–860 (1997).

    Article  CAS  Google Scholar 

  23. Janson, M. E., de Dood, M. E. & Dogterom, M. Dynamic instability of microtubules is regulated by force. J. Cell Biol. 161, 1029–1034 (2003).

    Article  CAS  Google Scholar 

  24. Grishchuk, E. L., Molodtsov, M. I., Ataullakhanov, F. I. & McIntosh, J. R. Force production by disassembling microtubules. Nature 438, 384–388 (2005).

    Article  CAS  Google Scholar 

  25. Waters, J. C., Skibbens, R. V. & Salmon, E. D. Oscillating mitotic newt lung cell kinetochores are, on average, under tension and rarely push. J. Cell Sci. 109, 2823–31 (1996).

    CAS  PubMed  Google Scholar 

  26. Westermann, S. et al. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440, 565–569 (2006).

    Article  CAS  Google Scholar 

  27. Belmont, L. D., Hyman, A. A., Sawin, K. E. & Mitchison, T. J. Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell 62, 579–589 (1990).

    Article  CAS  Google Scholar 

  28. Kinoshita, K., Arnal, I., Desai, A., Drechsel, D. N. & Hyman, A. A. Reconstitution of physiological microtubule dynamics using purified components. Science 294, 1340–1343 (2001).

    Article  CAS  Google Scholar 

  29. Verde, F., Dogterom, M., Stelzer, E., Karsenti, E. & Leibler, S. Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts. J. Cell Biol. 118, 1097–1108 (1992).

    Article  CAS  Google Scholar 

  30. Rieder, C. L., Davison, E. A., Jensen, L. C., Cassimeris, L. & Salmon, E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103, 581–591 (1986).

    Article  CAS  Google Scholar 

  31. Joglekar, A. P. & Hunt, A. J. A simple, mechanistic model for directional instability during mitotic chromosome movements. Biophys J. 83, 42–58 (2002).

    Article  CAS  Google Scholar 

  32. Pearson, C. G. et al. Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase. Curr. Biol. 14, 1962–1967 (2004).

    Article  CAS  Google Scholar 

  33. Janson, M. E. & Dogterom, M. Scaling of microtubule force-velocity curves obtained at different tubulin concentrations. Phys. Rev. Lett. 92, 248101 (2004).

    Article  Google Scholar 

  34. Mandelkow, E. M., Mandelkow, E. & Milligan, R. A. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 114, 977–991 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. J. Miranda and S. C. Harrison (Harvard Medical School) for providing the expression plasmid for the Dam1 complex, and B. Graczyk for electron microscopy sample preparation. This work was supported by a Searle Scholar Award (to C.L.A.), and by grants from the National Institutes of Health (to T.N.D. and C.L.A.). A.F.P. was supported by a National Institutes of Health (NIH) training grant, T32 GM07270.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L. Asbury.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1 and Supplementary movie legends (PDF 255 kb)

Supplementary Movie 1 (MOV 9669 kb)

Supplementary Movie 2 (MOV 9739 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franck, A., Powers, A., Gestaut, D. et al. Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis. Nat Cell Biol 9, 832–837 (2007). https://doi.org/10.1038/ncb1609

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1609

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing