Abstract

Caspase-14 belongs to a conserved family of aspartate-specific proteinases. Its expression is restricted almost exclusively to the suprabasal layers of the epidermis and the hair follicles1,2,3,4. Moreover, the proteolytic activation of caspase-14 is associated with stratum corneum formation, implicating caspase-14 in terminal keratinocyte differentiation and cornification5,6. Here, we show that the skin of caspase-14-deficient mice was shiny and lichenified, indicating an altered stratum-corneum composition. Caspase-14-deficient epidermis contained significantly more alveolar keratohyalin F-granules, the profilaggrin stores. Accordingly, caspase-14-deficient epidermis is characterized by an altered profilaggrin processing pattern and we show that recombinant caspase-14 can directly cleave profilaggrin in vitro. Caspase-14-deficient epidermis is characterized by reduced skin-hydration levels and increased water loss. In view of the important role of filaggrin in the structure and moisturization of the skin, the knockout phenotype could be explained by an aberrant processing of filaggrin. Importantly, the skin of caspase-14-deficient mice was highly sensitive to the formation of cyclobutane pyrimidine dimers after UVB irradiation, leading to increased levels of UVB-induced apoptosis. Removal of the stratum corneum indicate that caspase-14 controls the UVB scavenging capacity of the stratum corneum.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation. J. Invest. Dermatol. 115, 1148–1151 (2000).

  2. 2.

    et al. Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ. 7, 1218–1224 (2000).

  3. 3.

    et al. Vitamin D3 induces caspase-14 expression in psoriatic lesions and enhances caspase-14 processing in organotypic skin cultures. Am. J. Pathol. 165, 833–841 (2004).

  4. 4.

    et al. Stratum corneum-derived caspase-14 is catalytically active. FEBS Lett. 577, 446–450 (2004).

  5. 5.

    , & The cornified envelope: a model of cell death in the skin. Nature Rev. Mol. Cell Biol. 6, 328–340 (2005).

  6. 6.

    , , , & Death penalty for keratinocytes: apoptosis versus cornification. Cell Death Differ. 12, 1497–1508 (2005).

  7. 7.

    et al. Caspase-14 expression by epidermal keratinocytes is regulated by retinoids in a differentiation-associated manner. J. Invest. Dermatol. 119, 1150–1155 (2002).

  8. 8.

    , , , & Activation and substrate specificity of caspase-14. Biochemistry 43, 10560–10569 (2004).

  9. 9.

    et al. Caspase-14 is expressed in the epidermis, the choroid plexus, the retinal pigment epithelium and thymic Hassall's bodies. Cell Death Differ. 10, 257–259 (2003).

  10. 10.

    , , , & Ultrastructural localization of caspase-14 in human epidermis. J. Histochem. Cytochem. 52, 1561–1574 (2004).

  11. 11.

    et al. Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase). Proc. Natl Acad. Sci. USA 95, 1044–1049 (1998).

  12. 12.

    et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nature Genet. 38, 337–342 (2006).

  13. 13.

    et al. Loss of normal profilaggrin and filaggrin in flaky tail (ft/ft) mice: an animal model for the filaggrin-deficient skin disease ichthyosis vulgaris. J. Invest. Dermatol. 115, 1072–1081 (2000).

  14. 14.

    & Filaggrin breakdown to water binding compounds during development of the rat stratum corneum is controlled by the water activity of the environment. Dev. Biol. 115, 84–92 (1986).

  15. 15.

    et al. Evidence for specific proteolytic cleavage of the N-terminal domain of human profilaggrin during epidermal differentiation. J. Invest. Dermatol. 108, 170–178 (1997).

  16. 16.

    et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nature Genet. 38, 441–446 (2006).

  17. 17.

    et al. Caspase-14 but not caspase-3 is processed during the development of fetal mouse epidermis. Differentiation 73, 406–413 (2005).

  18. 18.

    , , & Patterned acquisition of skin barrier function during development. Development 125, 1541–1552 (1998).

  19. 19.

    , , , & Stimulatory effect of topical application of caffeine on UVB-induced apoptosis in the epidermis of p53 and Bax knockout mice. Cancer Res. 64, 5020–5027 (2004).

  20. 20.

    et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

  21. 21.

    & Molecular mechanisms of UV-induced apoptosis. Photodermatol. Photoimmunol. Photomed. 16, 195–201 (2000).

  22. 22.

    & Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. J. Invest. Dermatol. 124, 1099–1110 (2005).

  23. 23.

    et al. Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells. Cell Death Differ. 13, 2011–2022 (2006).

  24. 24.

    et al. Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. Nature Cell Biol. 4, 26–31 (2002).

  25. 25.

    , , , & Long-term culture of murine epidermal keratinocytes. J. Invest. Dermatol. 114, 1064–1065 (2000).

  26. 26.

    , , , & Characterization of the human epidermal profilaggrin gene. J. Biol. Chem. 267, 23772–23781 (1992).

  27. 27.

    et al. Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. Cell Death Differ. 8, 829–840 (2001).

  28. 28.

    et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nature Med. 5, 495–502 (1999).

  29. 29.

    et al. Improved generation of germline-competent embryonic stem cell lines from inbred mouse strains. Stem Cells 21, 90–97 (2003).

  30. 30.

    , & Processing of native caspase-14 occurs at an atypical cleavage site in normal epidermal differentiation. Biochem. Biophys. Res. Commun. 296, 911–917 (2002).

Download references

Acknowledgements

We thank A. Bredan for editing the manuscript and E. van Damme, A. Meeus and W. Deckers for technical assistance. This work was supported in part by the Interuniversitaire Attractiepolen V, the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen, the Epistem 6th framework EC-RTD grant and Ghent University GOA project. G.D. is a postdoctoral fellow at the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen, E.H. has an Instituut voor de Aanmoediging van Innovatie door Wetenschap en Technologie (IWT) predoctoral grant and P.O. had an Emmanuel Verscheuren and an IWT predoctoral grant. R.P. was supported by R01 AR49183 from the National Institutes of Health.

Author information

Affiliations

  1. Department for Molecular Biomedical Research, VIB, Technologie Park 927, B-9052, Ghent, Belgium.

    • Geertrui Denecker
    • , Esther Hoste
    • , Barbara Gilbert
    • , Tino Hochepied
    • , Petra Ovaere
    • , Saskia Lippens
    • , Claude Libert
    • , Peter Vandenabeele
    •  & Wim Declercq
  2. Department of Molecular Biology, Ghent University, Technologie Park 927, B-9052, Ghent, Belgium.

    • Geertrui Denecker
    • , Esther Hoste
    • , Barbara Gilbert
    • , Tino Hochepied
    • , Petra Ovaere
    • , Saskia Lippens
    • , Claude Libert
    • , Peter Vandenabeele
    •  & Wim Declercq
  3. Department of Pathology, Ghent University, De Pintelaan 185, B-9000, Ghent, Belgium.

    • Caroline Van den Broecke
  4. Department of Medical Protein Research, VIB, A. Bartsoenkaai 3, B-9000, Ghent, Belgium.

    • Petra Van Damme
    • , Joël Vandekerckhove
    •  & Kris Gevaert
  5. Department of Biochemistry, Ghent University, A. Bartsoenkaai 3, B-9000, Ghent, Belgium.

    • Petra Van Damme
    • , Joël Vandekerckhove
    •  & Kris Gevaert
  6. Department of Anatomy, Embryology, Histology, Medical Physics, Ghent University, De Pintelaan 185, B-9000, Ghent, Belgium.

    • Katharina D'Herde
  7. Department of Dermatology, Free University of Brussels (VUB), Laarbeeklaan 101, B-1090, Brussels, Belgium.

    • Jean-Pierre Hachem
  8. Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000, Ghent, Belgium.

    • Gaetan Borgonie
  9. Department of Oral Biology and Medicine (Dermatology) University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-7132, USA.

    • Richard B. Presland
  10. Department of Molecular and Cellular Medicine, University of Leuven, and Thromb-X N.V., Herestraat 49, B-3000, Leuven, Belgium.

    • Luc Schoonjans

Authors

  1. Search for Geertrui Denecker in:

  2. Search for Esther Hoste in:

  3. Search for Barbara Gilbert in:

  4. Search for Tino Hochepied in:

  5. Search for Petra Ovaere in:

  6. Search for Saskia Lippens in:

  7. Search for Caroline Van den Broecke in:

  8. Search for Petra Van Damme in:

  9. Search for Katharina D'Herde in:

  10. Search for Jean-Pierre Hachem in:

  11. Search for Gaetan Borgonie in:

  12. Search for Richard B. Presland in:

  13. Search for Luc Schoonjans in:

  14. Search for Claude Libert in:

  15. Search for Joël Vandekerckhove in:

  16. Search for Kris Gevaert in:

  17. Search for Peter Vandenabeele in:

  18. Search for Wim Declercq in:

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Peter Vandenabeele or Wim Declercq.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Figures S1, S2, S3, S4 and S5

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ncb1597

Further reading

  • Anticancer chemotherapy and radiotherapy trigger both non-cell-autonomous and cell-autonomous death

    • Isabelle Martins
    • , Syed Qasim Raza
    • , Laurent Voisin
    • , Haithem Dakhli
    • , Awatef Allouch
    • , Frédéric Law
    • , Dora Sabino
    • , Dorine De Jong
    • , Maxime Thoreau
    • , Elodie Mintet
    • , Delphine Dugué
    • , Mauro Piacentini
    • , Marie-Lise Gougeon
    • , Fanny Jaulin
    • , Pascale Bertrand
    • , Catherine Brenner
    • , David M. Ojcius
    • , Guido Kroemer
    • , Nazanine Modjtahedi
    • , Eric Deutsch
    •  & Jean-Luc Perfettini

    Cell Death & Disease (2018)

  • Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018

    • Lorenzo Galluzzi
    • , Ilio Vitale
    • , Stuart A. Aaronson
    • , John M. Abrams
    • , Dieter Adam
    • , Patrizia Agostinis
    • , Emad S. Alnemri
    • , Lucia Altucci
    • , Ivano Amelio
    • , David W. Andrews
    • , Margherita Annicchiarico-Petruzzelli
    • , Alexey V. Antonov
    • , Eli Arama
    • , Eric H. Baehrecke
    • , Nickolai A. Barlev
    • , Nicolas G. Bazan
    • , Francesca Bernassola
    • , Mathieu J. M. Bertrand
    • , Katiuscia Bianchi
    • , Mikhail V. Blagosklonny
    • , Klas Blomgren
    • , Christoph Borner
    • , Patricia Boya
    • , Catherine Brenner
    • , Michelangelo Campanella
    • , Eleonora Candi
    • , Didac Carmona-Gutierrez
    • , Francesco Cecconi
    • , Francis K.-M. Chan
    • , Navdeep S. Chandel
    • , Emily H. Cheng
    • , Jerry E. Chipuk
    • , John A. Cidlowski
    • , Aaron Ciechanover
    • , Gerald M. Cohen
    • , Marcus Conrad
    • , Juan R. Cubillos-Ruiz
    • , Peter E. Czabotar
    • , Vincenzo D’Angiolella
    • , Ted M. Dawson
    • , Valina L. Dawson
    • , Vincenzo De Laurenzi
    • , Ruggero De Maria
    • , Klaus-Michael Debatin
    • , Ralph J. DeBerardinis
    • , Mohanish Deshmukh
    • , Nicola Di Daniele
    • , Francesco Di Virgilio
    • , Vishva M. Dixit
    • , Scott J. Dixon
    • , Colin S. Duckett
    • , Brian D. Dynlacht
    • , Wafik S. El-Deiry
    • , John W. Elrod
    • , Gian Maria Fimia
    • , Simone Fulda
    • , Ana J. García-Sáez
    • , Abhishek D. Garg
    • , Carmen Garrido
    • , Evripidis Gavathiotis
    • , Pierre Golstein
    • , Eyal Gottlieb
    • , Douglas R. Green
    • , Lloyd A. Greene
    • , Hinrich Gronemeyer
    • , Atan Gross
    • , Gyorgy Hajnoczky
    • , J. Marie Hardwick
    • , Isaac S. Harris
    • , Michael O. Hengartner
    • , Claudio Hetz
    • , Hidenori Ichijo
    • , Marja Jäättelä
    • , Bertrand Joseph
    • , Philipp J. Jost
    • , Philippe P. Juin
    • , William J. Kaiser
    • , Michael Karin
    • , Thomas Kaufmann
    • , Oliver Kepp
    • , Adi Kimchi
    • , Richard N. Kitsis
    • , Daniel J. Klionsky
    • , Richard A. Knight
    • , Sharad Kumar
    • , Sam W. Lee
    • , John J. Lemasters
    • , Beth Levine
    • , Andreas Linkermann
    • , Stuart A. Lipton
    • , Richard A. Lockshin
    • , Carlos López-Otín
    • , Scott W. Lowe
    • , Tom Luedde
    • , Enrico Lugli
    • , Marion MacFarlane
    • , Frank Madeo
    • , Michal Malewicz
    • , Walter Malorni
    • , Gwenola Manic
    • , Jean-Christophe Marine
    • , Seamus J. Martin
    • , Jean-Claude Martinou
    • , Jan Paul Medema
    • , Patrick Mehlen
    • , Pascal Meier
    • , Sonia Melino
    • , Edward A. Miao
    • , Jeffery D. Molkentin
    • , Ute M. Moll
    • , Cristina Muñoz-Pinedo
    • , Shigekazu Nagata
    • , Gabriel Nuñez
    • , Andrew Oberst
    • , Moshe Oren
    • , Michael Overholtzer
    • , Michele Pagano
    • , Theocharis Panaretakis
    • , Manolis Pasparakis
    • , Josef M. Penninger
    • , David M. Pereira
    • , Shazib Pervaiz
    • , Marcus E. Peter
    • , Mauro Piacentini
    • , Paolo Pinton
    • , Jochen H.M. Prehn
    • , Hamsa Puthalakath
    • , Gabriel A. Rabinovich
    • , Markus Rehm
    • , Rosario Rizzuto
    • , Cecilia M.P. Rodrigues
    • , David C. Rubinsztein
    • , Thomas Rudel
    • , Kevin M. Ryan
    • , Emre Sayan
    • , Luca Scorrano
    • , Feng Shao
    • , Yufang Shi
    • , John Silke
    • , Hans-Uwe Simon
    • , Antonella Sistigu
    • , Brent R. Stockwell
    • , Andreas Strasser
    • , Gyorgy Szabadkai
    • , Stephen W.G. Tait
    • , Daolin Tang
    • , Nektarios Tavernarakis
    • , Andrew Thorburn
    • , Yoshihide Tsujimoto
    • , Boris Turk
    • , Tom Vanden Berghe
    • , Peter Vandenabeele
    • , Matthew G. Vander Heiden
    • , Andreas Villunger
    • , Herbert W. Virgin
    • , Karen H. Vousden
    • , Domagoj Vucic
    • , Erwin F. Wagner
    • , Henning Walczak
    • , David Wallach
    • , Ying Wang
    • , James A. Wells
    • , Will Wood
    • , Junying Yuan
    • , Zahra Zakeri
    • , Boris Zhivotovsky
    • , Laurence Zitvogel
    • , Gerry Melino
    •  & Guido Kroemer

    Cell Death & Differentiation (2018)

  • Epidermal cornification is preceded by the expression of a keratinocyte-specific set of pyroptosis-related genes

    • Julia Lachner
    • , Veronika Mlitz
    • , Erwin Tschachler
    •  & Leopold Eckhart

    Scientific Reports (2017)

  • Caspases and their substrates

    • Olivier Julien
    •  & James A Wells

    Cell Death & Differentiation (2017)

  • Phospholipase Cδ1 regulates p38 MAPK activity and skin barrier integrity

    • Kaori Kanemaru
    • , Yoshikazu Nakamura
    • , Kengo Totoki
    • , Takatsugu Fukuyama
    • , Madoka Shoji
    • , Hisae Kaneko
    • , Kanako Shiratori
    • , Atsuko Yoneda
    • , Takafumi Inoue
    • , Yoichiro Iwakura
    • , Kenji Kabashima
    •  & Kiyoko Fukami

    Cell Death & Differentiation (2017)