Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Loss of Drosophila Myb interrupts the progression of chromosome condensation

Abstract

Completion of chromosome condensation is required before segregation during the mitotic cell cycle to ensure the transmission of genetic material with high fidelity in a timely fashion. In many eukaryotes this condensation is regulated by phosphorylation of histone H3 on Ser 10 (H3S10). This phosphorylation normally begins in the late-replicating pericentric heterochromatin and then spreads to the earlier replicating euchromatin. Here, we show that these phases of condensation are genetically separable in that the absence of Drosophila Myb causes cells to arrest with H3S10 phosphorylation of heterochromatin but not euchromatin. In addition, we used mosaic analysis to demonstrate that although the Myb protein can be removed in a single cell cycle, the failure of chromosome condensation occurs only after many cell divisions in the absence of Myb protein. The Myb protein is normally located in euchromatic but not heterochromatic regions of the nucleus, suggesting that Myb may be essential for a modification of euchromatin that is required for the efficient spread of chromosome condensation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromosome condensation abnormalities in Drosophila Myb-null eye imaginal discs.
Figure 2: Compartment-specific rescue reveals an increased frequency of cells with PH3-positive heterochromatin in the absence of Myb.
Figure 3: Compartment-specific rescue reveals a defect in the progression of chromosome condensation in the absence of Myb.
Figure 4: A functional GFP–Myb fusion protein localizes to euchromatin, not heterochromatin.
Figure 5: Myb is required for a chromatin mark essential for progression of chromosome condensation.

Similar content being viewed by others

References

  1. Elgin, S. C. & Grewal, S. I. Heterochromatin: silence is golden. Curr. Biol. 13, R895–R898 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Hendzel, M. J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Nowak, S. J. & Corces, V. G. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20, 214–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Katzen, A. L. & Bishop, J. M. myb provides an essential function during Drosophila development. Proc. Natl Acad. Sci. USA 93, 13955–13960 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Manak, J. R., Mitiku, N. & Lipsick, J. S. Mutation of the Drosophila homologue of the Myb protooncogene causes genomic instability. Proc. Natl Acad. Sci. USA 99, 7438–7443 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gatti, M. & Baker, B. S. Genes controlling essential cell-cycle functions in Drosophila melanogaster. Genes Dev. 3, 438–453 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Katzen, A. L. et al. Drosophila myb is required for the G2/M transition and maintenance of diploidy. Genes Dev. 12, 831–843 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fung, S. M., Ramsay, G. & Katzen, A. L. Mutations in Drosophila myb lead to centrosome amplification and genomic instability. Development 129, 347–359 (2002).

    CAS  PubMed  Google Scholar 

  10. Beall, E. L. et al. Role for a Drosophila Myb-containing protein complex in site-specific DNA replication. Nature 420, 833–837 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Wolff, T. & Ready, D. F. in The Development of Drosophila melanogaster Vol. 2. (eds. Bate, M. & Martinez, A. M.) 1277–1325 (Cold Spring Harbor Laboratory Press, New York. 1993).

    Google Scholar 

  12. Okada, M., Akimaru, H., Hou, D. X., Takahashi, T. & Ishii, S. Myb controls G(2)/M progression by inducing cyclin B expression in the Drosophila eye imaginal disc. EMBO J. 21, 675–684 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stowers, R. S. & Schwarz, T. L. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152, 1631–1639 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Garcia-Bellido, A., Ripoll, P. & Morata, G. Developmental compartmentalisation of the wing disk of Drosophila. Nat. New Biol. 245, 251–253 (1973).

    Article  CAS  PubMed  Google Scholar 

  15. Garcia, B. A. et al. Modifications of human histone H3 variants during mitosis. Biochemistry 44, 13202–13213 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Swaminathan, J., Baxter, E. M. & Corces, V. G. The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin. Genes Dev 19, 65–76 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gatti, M., Smith, D. A. & Baker, B. S. A gene controlling condensation of heterochromatin in Drosophila melanogaster. Science 221, 83–85 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Rieder, C. L. & Maiato, H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev. Cell 7, 637–651 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Korenjak, M. et al. Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell 119, 181–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Lewis, P. W. et al. Identification of a Drosophila Myb–E2F2/RBF transcriptional repressor complex. Genes Dev. 18, 2929–2940 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aggarwal, B. D. & Calvi, B. R. Chromatin regulates origin activity in Drosophila follicle cells. Nature 430, 372–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Lipsick, J. S. synMuv verite — Myb comes into focus. Genes Dev 18, 2837–2844 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Buchwitz, B. J., Ahmad, K., Moore, L. L., Roth, M. B. & Henikoff, S. A histone-H3-like protein in C. elegans. Nature 401, 547–548 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Couteau, F., Guerry, F., Muller, F. & Palladino, F. A heterochromatin protein 1 homologue in Caenorhabditis elegans acts in germline and vulval development. EMBO Rep. 3, 235–241 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davidson, C., Tirouvanziam, R., Herzenberg, L. & Lipsick, J. Functional evolution of the vertebrate Myb gene family: B-Myb, but neither A-Myb nor c-Myb, complements Drosophila Myb in hemocytes. Genetics 169, 215–229 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tanaka, Y., Patestos, N. P., Maekawa, T. & Ishii, S. B-myb is required for inner cell mass formation at an early stage of development. J. Biol. Chem. 274, 28067–28070 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Shepard, J. L. et al. A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. Proc. Natl Acad. Sci. USA 102, 13194–13199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Ahlbory, D., Appl, H., Lang, D. & Klempnauer, K. H. Disruption of B-myb in DT40 cells reveals novel function for B-Myb in the response to DNA-damage. Oncogene 24, 7127–7134 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Stafstrom, J. P. & Staehelin, L. A. Dynamics of the nuclear envelope and of nuclear pore complexes during mitosis in the Drosophila embryo. Eur. J. Cell Biol. 34, 179–189 (1984).

    CAS  PubMed  Google Scholar 

  31. Pandey, R., Heidmann, S. & Lehner, C. F. Epithelial re-organization and dynamics of progression through mitosis in Drosophila separase complex mutants. J. Cell Sci. 118, 733–742 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the United States Public Health Service (USPHS) grant R01 CA90307 (J.S.L.). We thank S. Heidmann, members of the Botchan laboratory, and the other members of the Lipsick laboratory for helpful discussions and for sharing reagents.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the experimental work. The experiments were planned by J.R.M., H.W. and J.S.L. The manuscript was written by J.R.M. and J.S.L.

Corresponding author

Correspondence to Joseph S. Lipsick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 1023 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manak, J., Wen, H., Van, T. et al. Loss of Drosophila Myb interrupts the progression of chromosome condensation. Nat Cell Biol 9, 581–587 (2007). https://doi.org/10.1038/ncb1580

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1580

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing