Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions

Abstract

Intricate interactions between kinetochores and microtubules are essential for the proper distribution of chromosomes during mitosis. A crucial long-standing question is how vertebrate kinetochores generate chromosome motion while maintaining attachments to the dynamic plus ends of the multiple kinetochore MTs (kMTs) in a kinetochore fibre. Here, we demonstrate that individual kMTs in PtK1 cells are attached to the kinetochore outer plate by several fibres that either embed the microtubule plus-end tips in a radial mesh, or extend out from the outer plate to bind microtubule walls. The extended fibres also interact with the walls of nearby microtubules that are not part of the kinetochore fibre. These structural data, in combination with other recent reports, support a network model of kMT attachment wherein the fibrous network in the unbound outer plate, including the Hec1–Ndc80 complex, dissociates and rearranges to form kMT attachments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron tomography reveals that the unbound kinetochore outer plate is a fibrous network.
Figure 2: The fibrous network of the outer plate rearranges when microtubules bind.
Figure 3: Two distinct mechanisms for kMT attachment in a kinetochore.
Figure 4: Comparison of the lateral and end-on outer plate attachments to microtubules.
Figure 5: Schematic representation of a network model of the vertebrate kinetochore outer plate.

Similar content being viewed by others

References

  1. Tanaka, T. U., Stark, M. J. & Tanaka, K. Kinetochore capture and bi-orientation on the mitotic spindle. Nature Rev. Mol. Cell Biol. 6, 929–942 (2005).

    Article  CAS  Google Scholar 

  2. Maiato, H., Deluca, J., Salmon, E. D. & Earnshaw, W. C. The dynamic kinetochore-microtubule interface. J. Cell Sci. 117, 5461–5477 (2004).

    Article  CAS  Google Scholar 

  3. McIntosh, J. R., Grishchuk, E. L. & West, R. R. Chromosome-microtubule interactions during mitosis. Annu. Rev. Cell Dev. Biol. 18, 193–219 (2002).

    Article  CAS  Google Scholar 

  4. Rieder, C. L. & Salmon, E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 8, 310–318 (1998).

    Article  CAS  Google Scholar 

  5. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  CAS  Google Scholar 

  6. Joglekar, A. P., Bouck, D. C., Molk, J. N., Bloom, K. S. & Salmon, E. D. Molecular architecture of a kinetochore-microtubule attachment site. Nature Cell Biol. 8, 581–585 (2006).

    Article  CAS  Google Scholar 

  7. Cheeseman, I. M., Drubin, D. G. & Barnes, G. Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J. Cell Biol. 157, 199–203 (2002).

    Article  CAS  Google Scholar 

  8. De Wulf, P., McAinsh, A. D. & Sorger, P. K. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 17, 2902–2921 (2003).

    Article  CAS  Google Scholar 

  9. Brinkley, B. R. & Stubblefield, E. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma 19, 28–43 (1966).

    Article  CAS  Google Scholar 

  10. McEwen, B. F., Heagle, A. B., Cassels, G. O., Buttle, K. F. & Rieder, C. L. Kinetochore fiber maturation in PtK1 cells and its implications for the mechanisms of chromosome congression and anaphase onset. J. Cell Biol. 137, 1567–1580 (1997).

    Article  CAS  Google Scholar 

  11. McEwen, B. F. et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol. Biol. Cell 12, 2776–2789 (2001).

    Article  CAS  Google Scholar 

  12. Cimini, D. et al. Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J. Cell Biol. 153, 517–527 (2001).

    Article  CAS  Google Scholar 

  13. Zinkowski, R. P., Meyne, J. & Brinkley, B. R. The centromere-kinetochore complex: a repeat subunit model. J. Cell Biol. 113, 1091–1110 (1991).

    Article  CAS  Google Scholar 

  14. VandenBeldt, K. J. et al. Kinetochores use a novel mechanism for coordinating the dynamics of individual microtubules. Curr. Biol. 16, 1217–1223 (2006).

    Article  CAS  Google Scholar 

  15. Wei, R. R., Sorger, P. K. & Harrison, S. C. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc. Natl Acad. Sci. USA 102, 5363–5367 (2005).

    Article  CAS  Google Scholar 

  16. Ciferri, C. et al. Architecture of the human ndc80-hec1 complex, a critical constituent of the outer kinetochore. J. Biol. Chem. 280, 29088–29095 (2005).

    Article  CAS  Google Scholar 

  17. Cheeseman, I. M. et al. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 18, 2255–2268 (2004).

    Article  CAS  Google Scholar 

  18. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    Article  CAS  Google Scholar 

  19. Emanuele, M. J., McCleland, M. L., Satinover, D. L. & Stukenberg, P. T. Measuring the stoichiometry and physical interactions between components elucidates the architecture of the vertebrate kinetochore. Mol. Biol. Cell 16, 4882–4892 (2005).

    Article  CAS  Google Scholar 

  20. DeLuca, J. G. et al. Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol. Biol. Cell 16, 519–531 (2005).

    Article  CAS  Google Scholar 

  21. McEwen, B. F., Arena, J. T., Frank, J. & Rieder, C. L. Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high voltage electron microscopic tomography. J. Cell Biol. 120, 301–312 (1993).

    Article  CAS  Google Scholar 

  22. McEwen, B. F., Hsieh, C. E., Mattheyses, A. L. & Rieder, C. L. A new look at kinetochore structure in vertebrate somatic cells using high-pressure freezing and freeze substitution. Chromosoma 107, 366–375 (1998).

    Article  CAS  Google Scholar 

  23. Miranda, J. J., De Wulf, P., Sorger, P. K. & Harrison, S. C. The yeast DASH complex forms closed rings on microtubules. Nature Struct. Mol. Biol 12, 138–143 (2005).

    Article  CAS  Google Scholar 

  24. Westermann, S. et al. Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1 ring complex. Mol. Cell 17, 277–290 (2005).

    Article  CAS  Google Scholar 

  25. Rieder, C. L. The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells. Chromosoma 84, 145–158 (1981).

    Article  CAS  Google Scholar 

  26. Kapoor, T. M. et al. Chromosomes can congress to the metaphase plate before biorientation. Science 311, 388–391 (2006).

    Article  CAS  Google Scholar 

  27. Cleveland, D. W., Mao, Y. & Sullivan, K. F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112, 407–421 (2003).

    Article  CAS  Google Scholar 

  28. Okada, M. et al. The CENP–H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nature Cell Biol. 8, 446–457 (2006).

    Article  CAS  Google Scholar 

  29. Khodjakov, A., Cole, R. W., McEwen, B. F., Buttle, K. F. & Rieder, C. L. Chromosome fragments possessing only one kinetochore can congress to the spindle equator. J. Cell Biol. 136, 229–240 (1997).

    Article  CAS  Google Scholar 

  30. Feng, J., Huang, H. & Yen, T. J. CENP-F is a novel microtubule-binding protein that is essential for kinetochore attachments and affects the duration of the mitotic checkpoint delay. Chromosoma 115, 320–329 (2006).

    Article  CAS  Google Scholar 

  31. DeLuca, J. G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127, 969–982 (2006).

    Article  CAS  Google Scholar 

  32. McEwen, B. F., Marko, M., Hsieh, C. E. & Mannella, C. Use of frozen-hydrated axonemes to assess imaging parameters and resolution limits in cryoelectron tomography. J. Struct. Biol. 138, 47–57 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Glaser, M. Koonce and T. Wagenknecht and for helpful comments on the manuscript. This work was supported by National Institutes of Health R01 GM06627 to B.F.M and GM59363 to A.K. We also acknowledge National Institutes of Health P41 RR01219 and National Science Foundation DBI9871347 to J. Frank to support the Wadsworth Center's Resource for Visualization of Biological Complexity and the FEI Tecnai F20 electron microscope. Finally, we are grateful for technical support from the Wadsworth Center's Core Facility for Electron Microscopy.

Author information

Authors and Affiliations

Authors

Contributions

B.F.M. directed the work. Y.D. and B.F.M. were responsible for experimental planning. K.J.V., Y.D. and B.F.M. preprared the specimens. K.J.V. and X.M. were responsible for data collection. Y.D. and K.J.V. computed tomographic reconstructions and Y.D. segemented the volumes. Y.D., B.F.M. and A.K. were responsible for data analysis and writing.

Corresponding author

Correspondence to Bruce F. McEwen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figure S1, S2, S3 and S4 (PDF 606 kb)

Supplementary Information

Supplementary Movie S1 (MOV 1577 kb)

Supplementary Information

Supplementary Movie S2 (MOV 3032 kb)

Supplementary Information

Supplementary Movie S3 (MOV 1218 kb)

Supplementary Information

Supplementary Movie S4 (MOV 3170 kb)

Supplementary Information

Supplementary Movie S5 (MOV 2566 kb)

Supplementary Information

Supplementary Movie S6 (MOV 3107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Y., Vanden Beldt, K., Meng, X. et al. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nat Cell Biol 9, 516–522 (2007). https://doi.org/10.1038/ncb1576

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1576

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing